Artificial Intelligence
and Machine Learning

Outlier Detection



Anomaly/Outlier Detection

What are anomalies/outliers?

o The set of data points that are considerably different than
the remainder of the data
Variants of Anomaly/Outlier Detection Problems

o Given a database D, find all the data points x € D with
anomaly scores greater than some threshold t

o Given a database D, find all the data points x € D having
the top-n largest anomaly scores f(x)

o Given a database D, containing mostly normal (but
unlabeled) data points, and a test point x, compute the
anomaly score of x with respect to D

Applications:

o Credit card fraud detection, telecommunication fraud
detection, network intrusion detection, fault detection



Anomaly Detection

Challenges
o How many outliers are there in the data?

o Method is unsupervised

Validation can be quite challenging (just like for
clustering)

o Finding needle in a haystack

Working assumption:

o There are considerably more “normal”
observations than “abnormal” observations
(outliers/anomalies) in the data



Anomaly Detection Schemes

General Steps
o Build a profile of the “normal” behavior

Profile can be patterns or summary statistics for the
overall population

o Use the “normal” profile to detect anomalies
Anomalies are observations whose characteristics
differ significantly from the normal profile

Types of anomaly detection schemes

o Graphical & Statistical-based

o Distance-based

o Model-based



Graphical Approaches

Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
Limitations

o Time consuming
o Subjective
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Convex Hull Method

Extreme points are assumed to be outliers

Use convex hull method to detect extreme
values

Convex hull

What if the outlier occurs in the middle of the
data”?



Statistical Approaches

Assume a parametric model describing the
distribution of the data (e.g., normal distribution)
Apply a statistical test that depends on

o Data distribution
o Parameter of distribution (e.g., mean, variance)

o Number of expected outliers (confidence limit)
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Grubbs’ Test

Detect outliers in univariate data
Assume data comes from normal distribution

Detects one outlier at a time, remove the
outlier, and repeat

o Hy: There is no outlier in data

0o Ha: There is at least one outlier

Grubbs’ test statistic: G — max|X — X
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Statistical-based — Likelithood Approach

Assume the data set D contains samples from a
mixture of two probability distributions:

o M (majority distribution)

o A (anomalous distribution)

General Approach:

o Initially, assume all the data points belong to M

o Let Ly(D) be the log likelihood of D at time t

o For each point x; that belongs to M, move it to A
Let L., (D) be the new log likelihood.
Compute the difference, A = Li(D) — L1 (D)

If A>c (some threshold), then x; is declared as an anomaly
and moved permanently from M to A



Statistical-based — Likelithood Approach

Data distribution, D=(1-A) M+ L A
M is a probability distribution estimated from data

o Can be based on any modeling method (naive Bayes,
maximum entropy, etc)

A is initially assumed to be uniform distribution
Likelihood at time t:

L (D)= ﬁPD (x;) = ((1 - )M H By (xi)J[iAt HPA, (xi))
LL(D)=|M |log(1—A)+ > logP, (x,)+|4|logA+ > logP, (x;)

x;eM, xX; €4,
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Limitations ot Statistical Approaches

Most of the tests are for a single attribute

N many cases, data distribution may not be
KNnown

~or high dimensional data, it may be difficult
to estimate the true distribution
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Distance-based Approaches

Data is represented as a vector of features

Three major approaches
o Nearest-neighbor based
0 Density based
o Clustering based
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Nearest-Neighbor Based Approach

Approach:

o Compute the distance between every pair of data
points
o There are various ways to define outliers:

Data points for which there are fewer than p
neighboring points within a distance D

The top n data points whose distance to the kth nearest
neighbor is greatest

The top n data points whose average distance to the k
nearest neighbors is greatest
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Outliers 1n LLower Dimensional Projection

In high-dimensional space, data is sparse

and notion of proximity becomes

meaningless

o Every point is an almost equally good outlier from
the perspective of proximity-based definitions

Lower-dimensional projection methods

o A point is an outlier if in some lower dimensional
projection, it is present in a local region of
abnormally low density
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Outliers 1n LLower Dimensional Projection

Divide each attribute into ¢ equal-depth intervals
o Each interval contains a fraction f = 1/¢ of the records

Consider a k-dimensional cube created by picking
grid ranges from k different dimensions

o If attributes are independent, we expect region to contain a
fraction f of the records

o If there are N points, we can measure sparsity of a cube D
as. n(D) — N - f*
S(D) =
(D) \/A.\F.fk.(l_fk)

o Negative sparsity indicates cube contains smaller number
of points than expected
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Density-based: LOF approach

For each point, compute the density of its local neighborhood

Compute local outlier factor (LOF) of a sample p as the
average of the ratios of the density of sample p and the density

of its nearest neighbors
Outliers are points with largest LOF value

Ce - -
In the NN approach, p, is
not considered as outlier,

while LOF approach find
both p; and p, as outliers
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Clustering-Based

Basic idea:

o Cluster the data into groups
of different density

o Choose points in small
cluster as candidate outliers

o Compute the distance
between candidate points

and non-candidate clusters.

If candidate points are far
from all other non-
candidate points, they are
outliers
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Base Rate Fallacy

= Bayes theorem:

P(A|B) = P(A)P'(’;()BM)
= More ge
PAB) — —F(A) - P(BIA)

i—1 P(A;) - P(B|A;)
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Base Rate Fallacy (Axelsson, 1999)

The base-rate fallacy is best described through exam-
ple.? Suppose that your doctor performs a test that is 99%
accurate, i.e. when the test was administered to a test popu-
lation all of whom had the disease, 99% of the tests indicated
disease, and likewise, when the test population was known
to be 100% free of the disease, 99% of the test results were
negative. Upon visiting your doctor to learn the results he
tells you he has good news and bad news. The bad news is
that indeed you tested positive for the disease. The good
news however, is that out of the entire population the rate
of incidence is only 1/10000, i.e. only 1 in 10000 people have
this ailment. What, given this information, is the probabil-
ity of you having the disease? The reader is encouraged to
make a quick “guesstimate” of the answer at this point.
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Base Rate Fallacy

_ P(S) - P(P|S)
P(S|P) = P(S) - P(P|S) + P(~S) - P(P|-S)
P(S|P) — 1/10000 - 0.99 B

1/10000 - 0.99 + (1 — 1/10000) - 0.01
= 0.00980. ..~ 1%

Even though the test is 99% certain, your
chance of having the disease is 1/100,
because the population of healthy people is
much larger than sick people
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Base Rate Fallacy in Intrusion Detection

|: Intrusive behavior,
—l: non-intrusive behavior
A: alarm
—A: no alarm

Detection rate (true positive rate): P(A|l)
False alarm rate: P(A|-l)

Goal is to maximize both
o Bayesian detection rate, P(l|A)

0 P(=l|—A)
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Detection Rate vs False Alarm Rate

P(I) - P(A|I)
P(I) - P(A[T) + P(—I) - P(A|-])

P(I|A) =

1-10°

P(I)=1
= Suppose: /2'10
P(~I) =1 — P(I) = 0.99998

=2.10"%;

B 2-107° - P(A|I)
= Then: PUlA= 2-10-5. P(A|I) + 0.99998 - P(A|-I)

= False alarm rate becomes more dominant if
P(l) is very low




