

Artificial Intelligence and Machine Learning

Cluster Analysis

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Grouping a set of data objects into clusters
 - Intra-cluster distances are minimized
 - Inter-cluster distances are maximized
- Clustering is **unsupervised classification**: no predefined class labels

Typical applications

- As a **stand-alone tool** to get insight into data distribution
 - **Understanding**
 - Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations
 - **Summarization**
 - Reduce the size of large data sets
- As a **preprocessing step** for other algorithms

General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data analysis
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earthquake studies: Observed earth quake epicenters should be clustered along continent faults

What is not Cluster Analysis?

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
- Graph partitioning
 - Some mutual relevance and synergy, but areas are not identical

What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation.
- The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns.

Requirements of Cluster Analysis

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Measures of Similarity

- Similarity and/or dissimilarity are also used by similarity based machine learning methods
- See pages 5 to 13 of "Similarity Based Learning"

Density

- Density-based clustering require a notion of density
- Examples:
 - Euclidean density
 - Euclidean density = number of points per unit volume
 - Probability density
 - Graph-based density

Euclidean Density – Cell-based

- Simplest approach is to divide region into a number of rectangular cells of equal volume

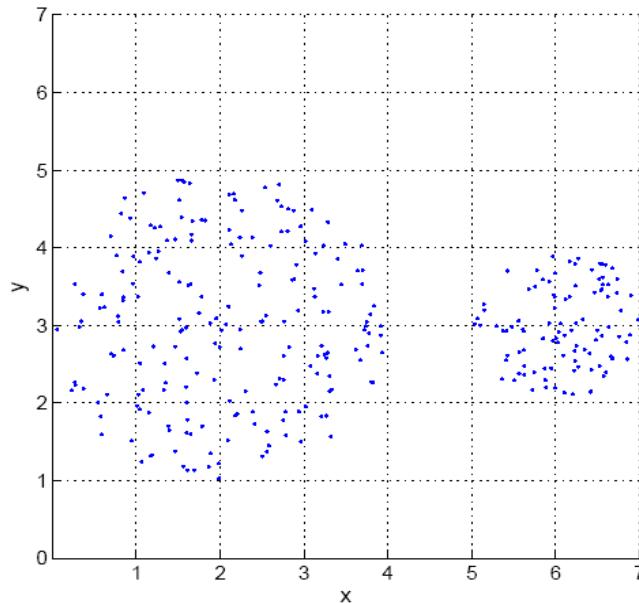


Figure 7.13. Cell-based density.

0	0	0	0	0	0	0
0	0	0	0	0	0	0
4	17	18	6	0	0	0
14	14	13	13	0	18	27
11	18	10	21	0	24	31
3	20	14	4	0	0	0
0	0	0	0	0	0	0

Table 7.6. Point counts for each grid cell.

Euclidean Density – Center-based

- Euclidean density is the number of points within a specified radius of the point

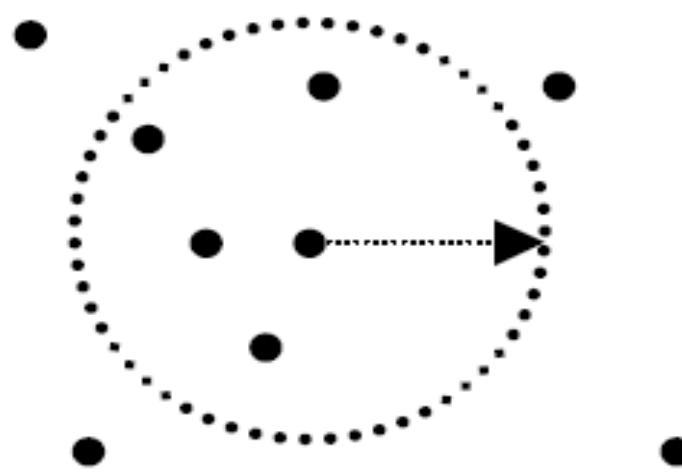


Figure 7.14. Illustration of center-based density.

Major Clustering Approaches

- Partitioning algorithms: Construct various (non-overlapping) partitions, such that each data object is in exactly one partition and then evaluate them by some criterion
- Hierarchy algorithms: Create a set of nested clusters organized as a hierarchical tree
- Density-based: based on connectivity and density functions
- Grid-based: based on a multiple-level granularity structure
- Model-based: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other

Other Distinctions Between Sets of Clusters

- **Exclusive versus non-exclusive**
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or ‘border’ points
- **Fuzzy versus non-fuzzy**
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- **Partial versus complete**
 - In some cases, we only want to cluster some of the data
- **Heterogeneous versus homogeneous**
 - Cluster of widely different sizes, shapes, and densities

Types of Clusters

- Well-separated clusters
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.
- Center-based clusters
 - A cluster is a set of objects such that an object in a cluster is closer (more similar) to the “center” of a cluster, than to the center of any other cluster
 - The center of a cluster is often a **centroid**, the average of all the points in the cluster, or a **medoid**, the most “representative” point of a cluster
- Contiguous clusters (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.
- Density-based clusters
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.
- Property or Conceptual
 - Finds clusters that share some common property or represent a particular concept.

Types of Clusters

- Described by an Objective Function
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the 'goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
 - A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.
 - Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - This is a derived measure, but central to clustering
- Sparseness
 - Dictates type of similarity
 - Adds to efficiency
- Attribute type
 - Dictates type of similarity
- Type of Data
 - Dictates type of similarity
 - Other characteristics, e.g., autocorrelation
- Dimensionality
- Noise and Outliers
- Type of Distribution

Clustering Algorithms

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a **centroid** (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K , must be specified
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: **repeat**
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’
- Complexity is $O(n * K * I * d)$
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^K \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that m_i corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K , the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Problems with Selecting Initial Points

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n , then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K!n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if $K = 10$, then probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues

Handling Empty Clusters

- Basic K-means algorithm can yield empty clusters
- Several strategies
 - Choose the point that contributes most to SSE
 - Choose a point from the cluster with the highest SSE
 - If there are several empty clusters, the above can be repeated several times.

Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
 - Each assignment updates zero or two centroids
 - More expensive
 - Introduces an order dependency
 - Never get an empty cluster
 - Can use “weights” to change the impact

Pre-processing and Post-processing

- Pre-processing
 - Normalize the data
 - Eliminate outliers
- Post-processing
 - Eliminate small clusters that may represent outliers
 - Split 'loose' clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are 'close' and that have relatively low SSE

Variations of the *K-Means* Method

- A few variants of the *k-means* which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: *k-modes* (Huang'98)
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - Using a frequency-based method to update modes of clusters
 - A mixture of categorical and numerical data: *k-prototype* method

The *K-Medoids* Clustering Method

- Find *representative* objects, called medoids, in clusters
- *PAM* (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - *PAM* works effectively for small data sets, but does not scale well for large data sets
- *CLARA* (Kaufmann & Rousseeuw, 1990)
- *CLARANS* (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

PAM (Partitioning Around Medoids) (1987)

- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
 - Select k representative objects arbitrarily
 - For each pair of non-selected object h and selected object i , calculate the total swapping cost TC_{ih}
 - For each pair of i and h ,
 - If $TC_{ih} < 0$, i is replaced by h
 - Then assign each non-selected object to the most similar representative object
 - repeat steps 2-3 until there is no change

Bisecting K-means

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering

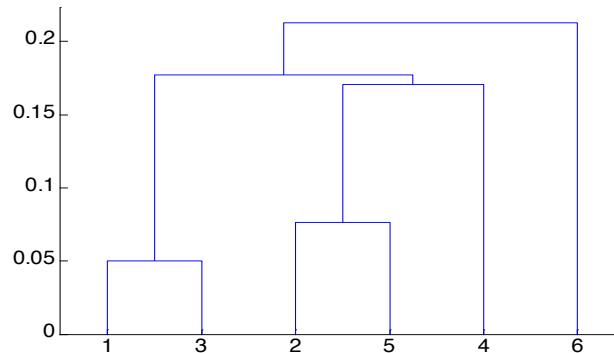
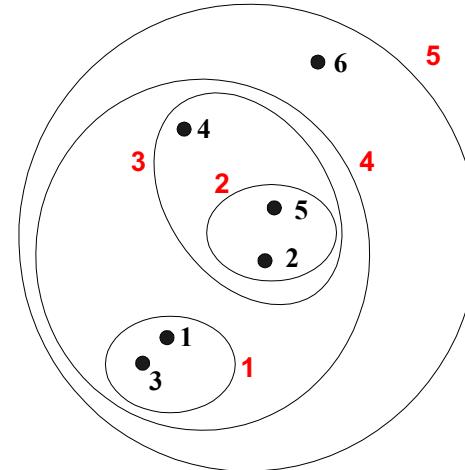
- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: **repeat**
- 3: Select a cluster from the list of clusters
- 4: **for** $i = 1$ to *number_of_iterations* **do**
- 5: Bisect the selected cluster using basic K-means
- 6: **end for**
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: **until** Until the list of clusters contains K clusters

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits



Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by ‘cutting’ the dendrogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

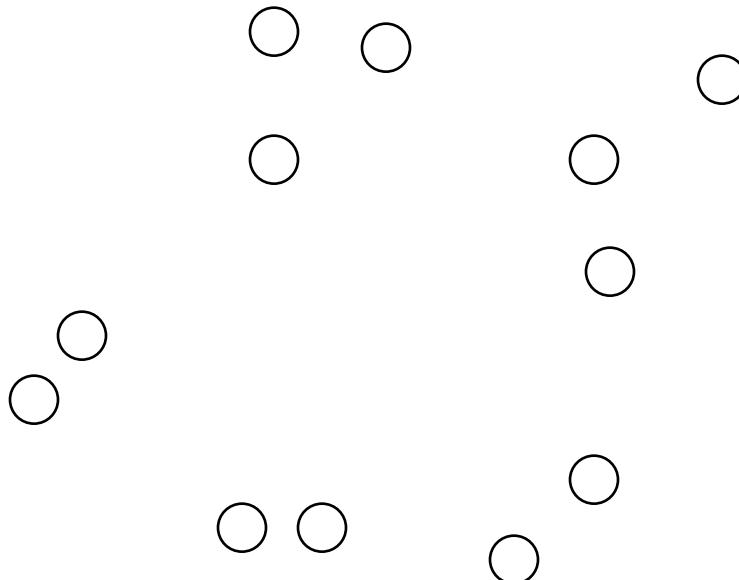
- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 1. Compute the proximity matrix
 2. Let each data point be a cluster
 3. **Repeat**
 4. Merge the two closest clusters
 5. Update the proximity matrix
 6. **Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

- Start with clusters of individual points and a proximity matrix

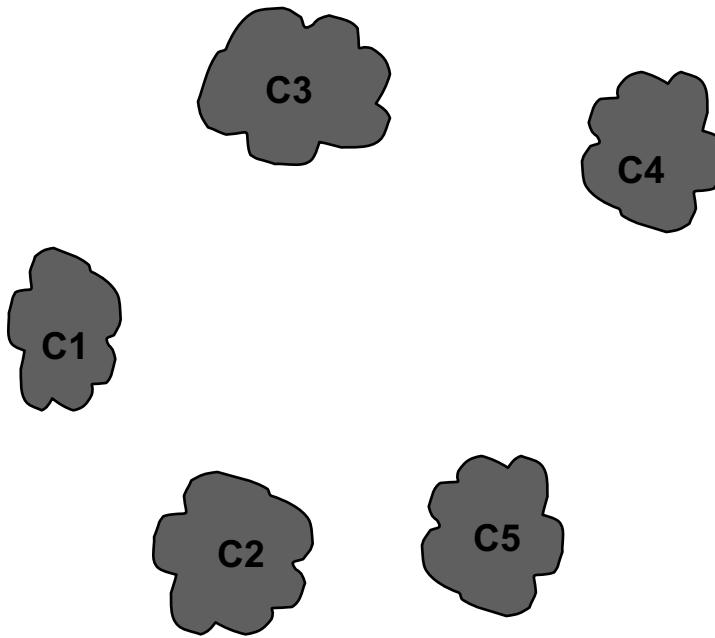


	p1	p2	p3	p4	p5	...
p1						
p2						
p3						
p4						
p5						
.						
.						
Proximity Matrix						

p1 p2 p3 p4 ... p9 p10 p11 p12

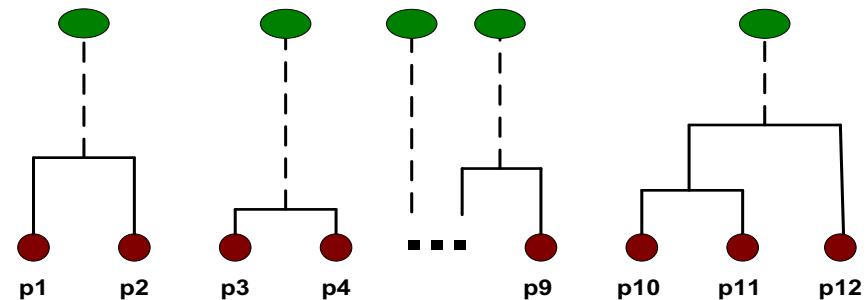
Intermediate Situation

- After some merging steps, we have some clusters



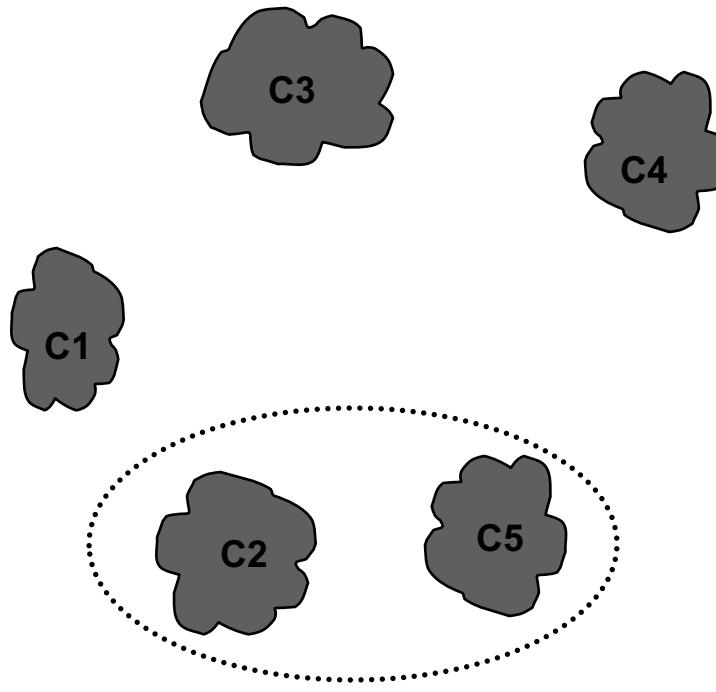
	c1	c2	c3	c4	c5
c1					
c2					
c3					
c4					
c5					

Proximity Matrix



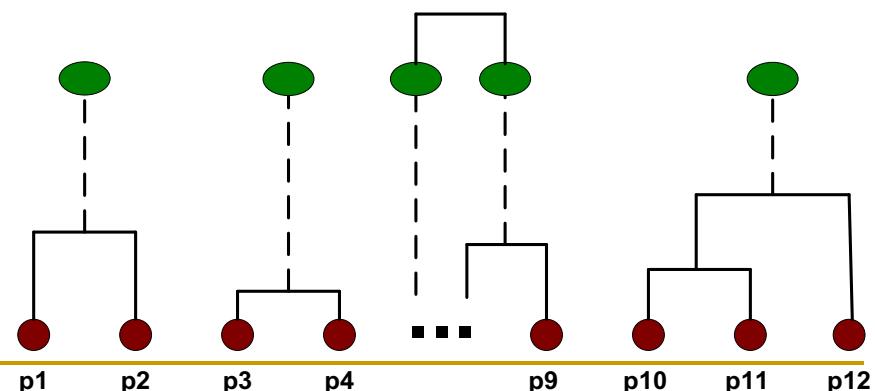
Intermediate Situation

- We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.



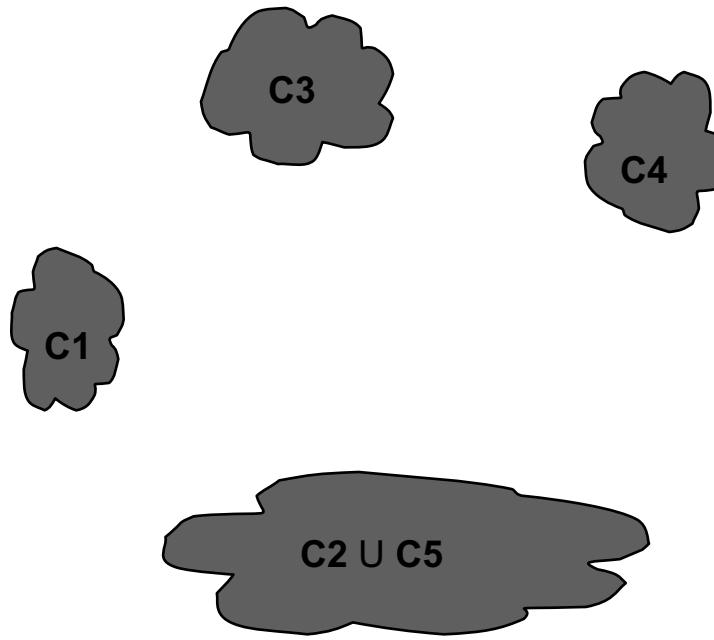
	C1	C2	C3	C4	C5
C1					
C2					
C3					
C4					
C5					

Proximity Matrix



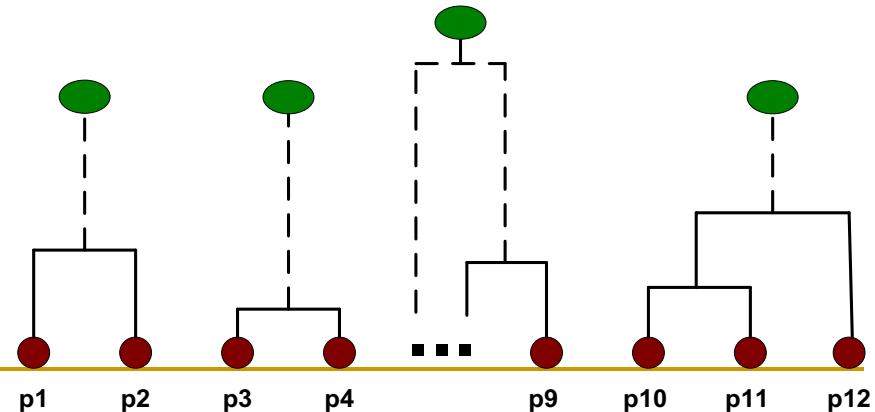
After Merging

- The question is “How do we update the proximity matrix?”

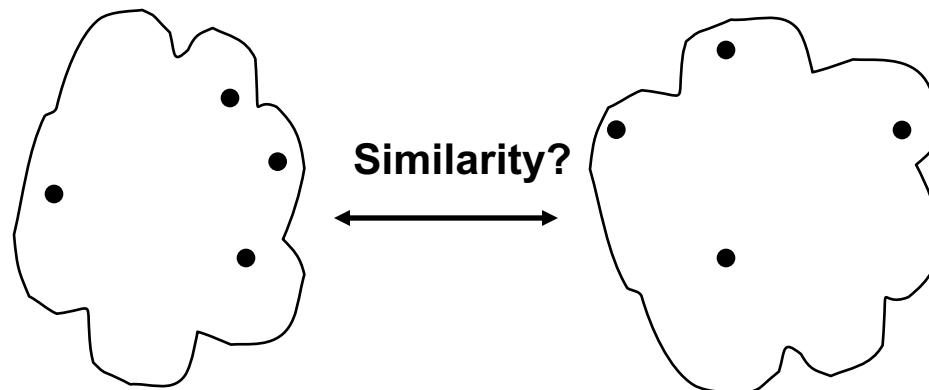


		C1	C5	C3	C4
		C1	?		
		C2 U C5	?	?	?
		C3	?		
		C4	?		

Proximity Matrix



How to Define Inter-Cluster Similarity



- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	p3	p4	p5	...
p1						
p2						
p3						
p4						
p5						
.

Proximity Matrix

Hierarchical Clustering: Time and Space requirements

- $O(N^2)$ space since it uses the proximity matrix.
 - N is the number of points.
- $O(N^3)$ time in many cases
 - There are N steps and at each step the size, N^2 , proximity matrix must be updated and searched
 - Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches

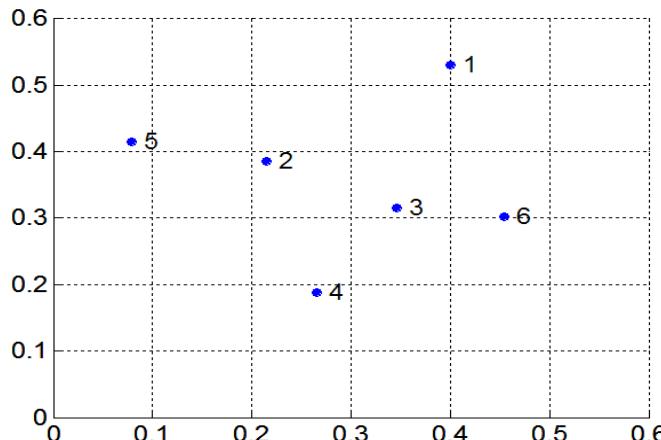
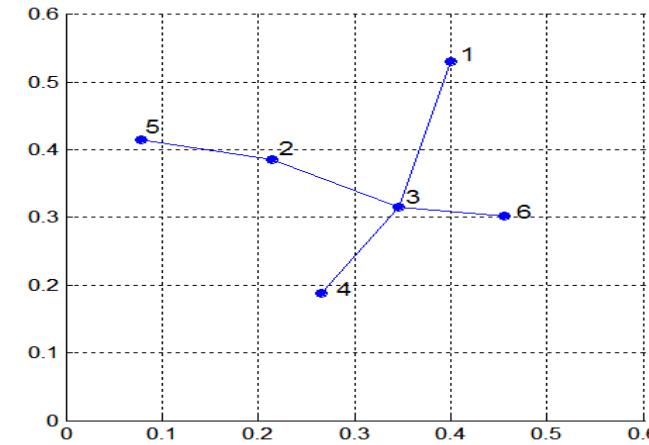
Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

MST: Divisive Hierarchical Clustering

■ Build MST (Minimum Spanning Tree)

- ❑ Start with a tree that consists of any point
- ❑ In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- ❑ Add q to the tree and put an edge between p and q



MST: Divisive Hierarchical Clustering

■ Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: **repeat**
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: **until** Only singleton clusters remain

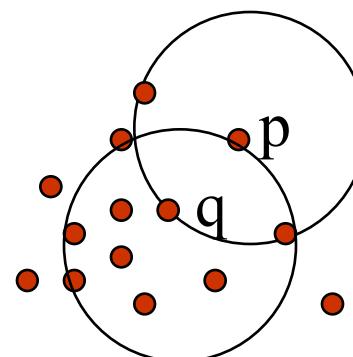
Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

Density-Based Clustering: Background

- Two parameters:
 - ***Eps***: Maximum radius of the neighbourhood
 - ***MinPts***: Minimum number of points in an *Eps*-neighbourhood of that point
- $N_{Eps}(p)$: $\{q \text{ belongs to } D \mid \text{dist}(p, q) \leq Eps\}$
- Directly density-reachable: A point p is directly density-reachable from a point q wrt. ***Eps***, ***MinPts*** if
 - 1) p belongs to $N_{Eps}(q)$
 - 2) core point condition:

$$|N_{Eps}(q)| \geq \text{MinPts}$$



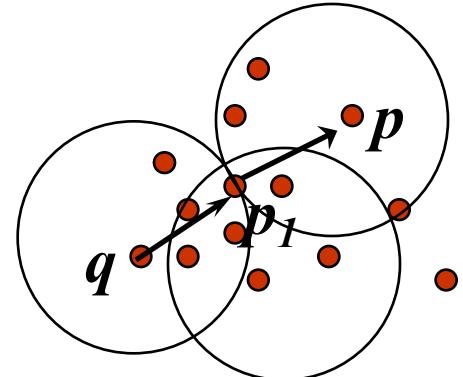
MinPts = 5

Eps = 1 cm

Density-Based Clustering: Background (II)

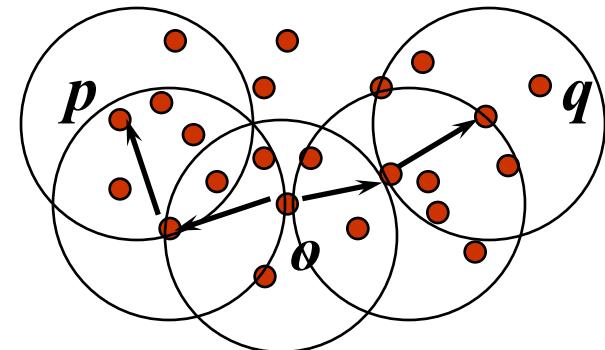
■ Density-reachable:

- A point p is density-reachable from a point q wrt. $Eps, MinPts$ if there is a chain of points p_1, \dots, p_n , $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i ;



■ Density-connected

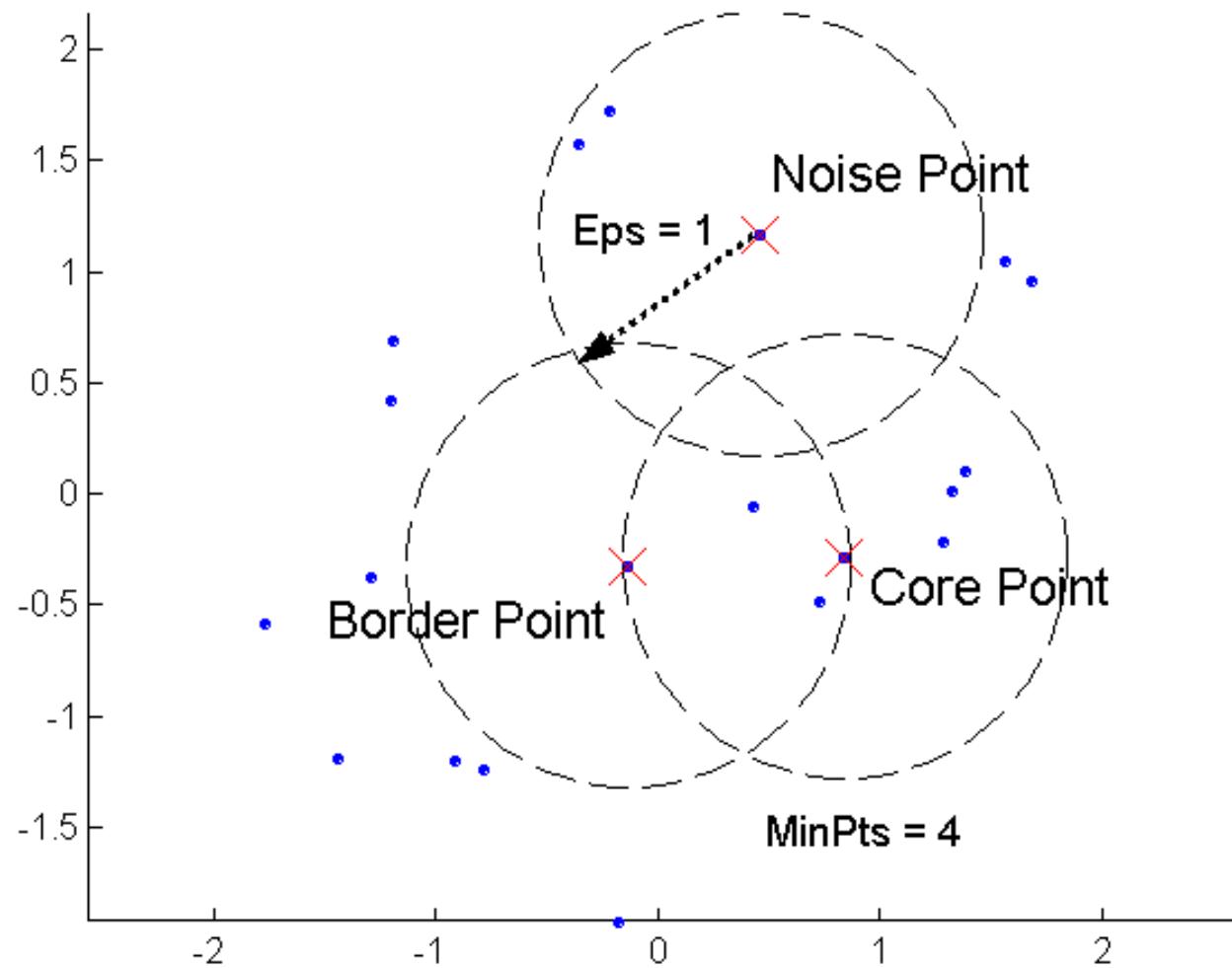
- A point p is density-connected to a point q wrt. $Eps, MinPts$ if there is a point o such that both, p and q are density-reachable from o wrt. Eps and $MinPts$.



DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a **core point** if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A **border point** has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A **noise point** is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

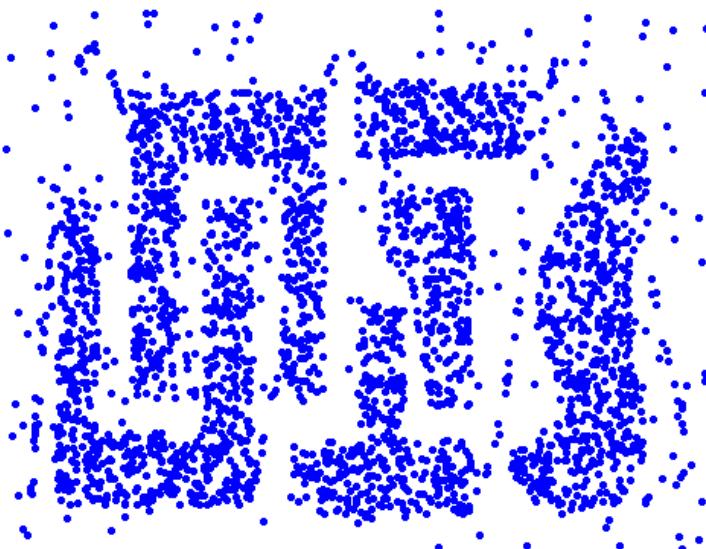


DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

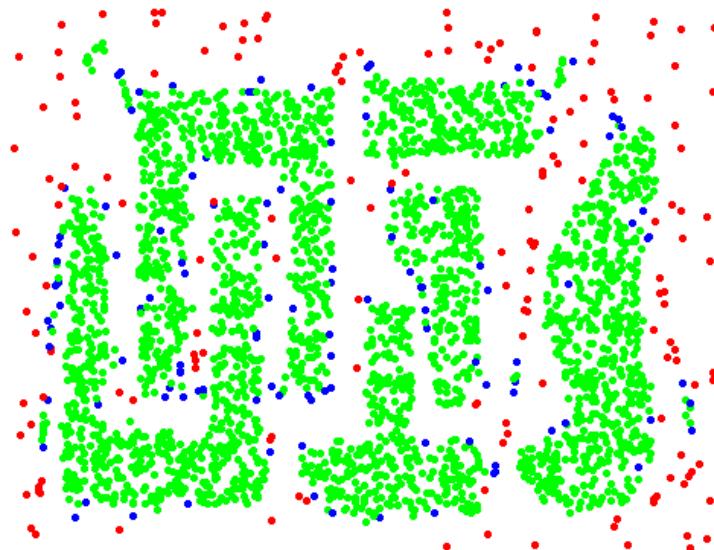
```
current_cluster_label ← 1
for all core points do
    if the core point has no cluster label then
        current_cluster_label ← current_cluster_label + 1
        Label the current core point with cluster label current_cluster_label
    end if
    for all points in the  $Eps$ -neighborhood, except  $i^{th}$  the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```

DBSCAN: Core, Border and Noise Points



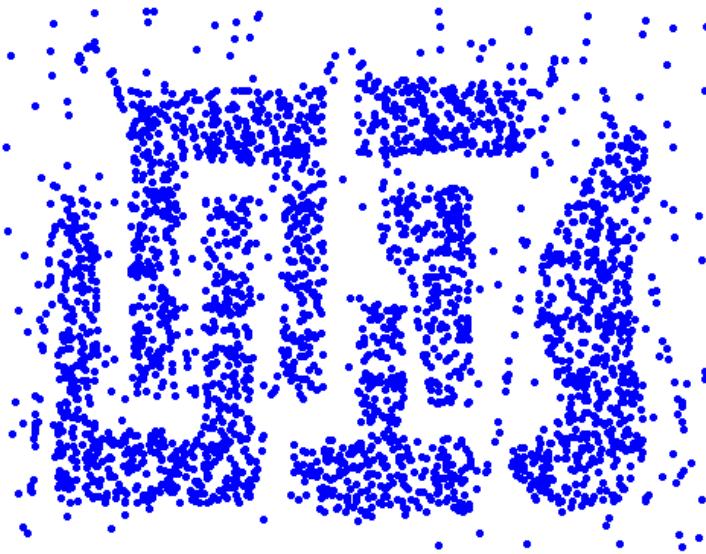
Original Points

Eps = 10, MinPts = 4

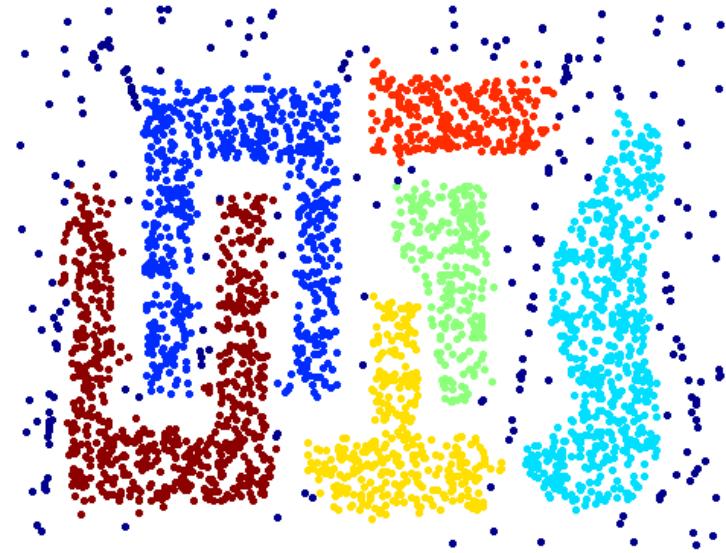


Point types: **core**,
border and **noise**

When DBSCAN Works Well



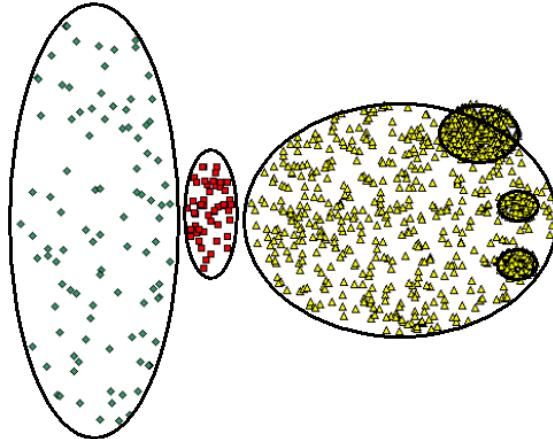
Original Points



Clusters

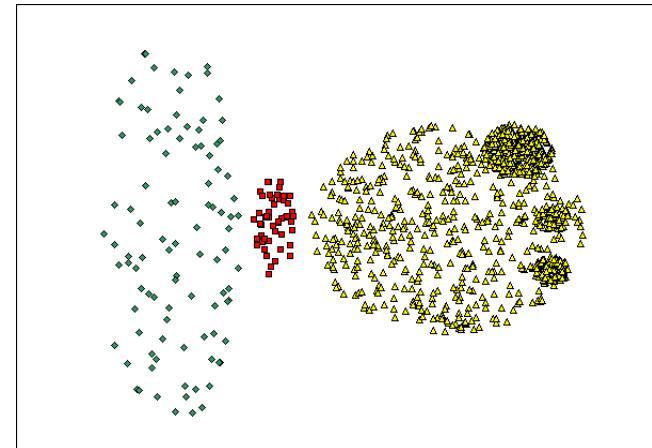
- **Resistant to Noise**
- **Can handle clusters of different shapes and sizes**

When DBSCAN Does NOT Work Well



Original Points

- **Varying densities**
- **High-dimensional data**



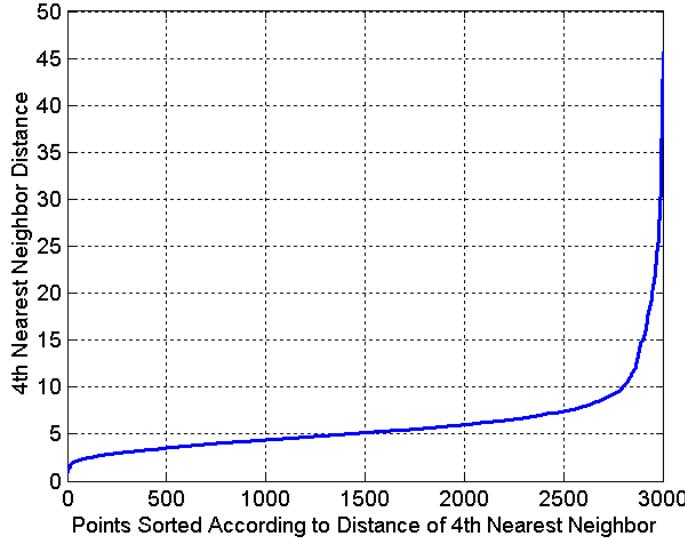
(MinPts=4, Eps=9.75).



(MinPts=4, Eps=9.92)

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their k^{th} nearest neighbors are at roughly the same distance
- Noise points have the k^{th} nearest neighbor at farther distance
- So, plot sorted distance of every point to its k^{th} nearest neighbor



Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the “goodness” of the resulting clusters?
- But “clusters are in the eye of the beholder”!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Different Aspects of Cluster Validation

1. Determining the **clustering tendency** of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
3. Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.
 - Use only the data
4. Comparing the results of two different sets of cluster analyses to determine which is better.
5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measures of Cluster Validity

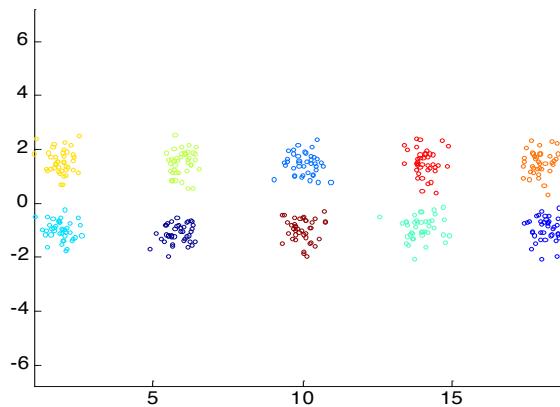
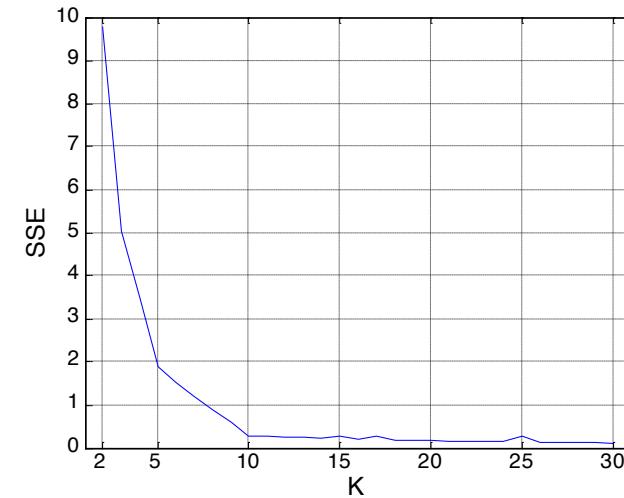
- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - **External Index:** Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - **Internal Index:** Used to measure the goodness of a clustering structure *without* respect to external information.
 - Sum of Squared Error (SSE)
 - **Relative Index:** Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as **criteria** instead of **indices**
 - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

Measuring Cluster Validity Via Correlation

- Two matrices
 - Proximity Matrix
 - “Incidence” Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between $n(n-1) / 2$ entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Internal Measures: SSE

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
 - SSE
- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters



Framework for Cluster Validity

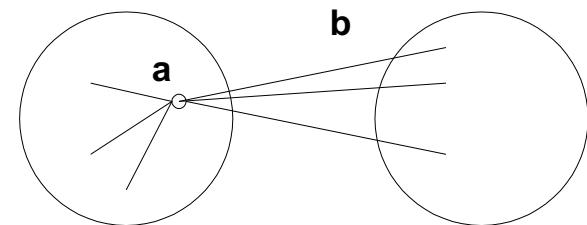
- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more “atypical” a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
 - These approaches are more complicated and harder to understand.
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Internal Measures: Cohesion and Separation

- **Cluster Cohesion:** Measures how closely related are objects in a cluster
 - Example: SSE
- **Cluster Separation:** Measure how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)
$$WSS = \sum_i \sum_{x \in C_i} (x - m_i)^2$$
 - Separation is measured by the between cluster sum of squares
$$BSS = \sum |C_i| (m - m_i)^2$$
 - Where $|C_i|$ is the size of cluster i and m is the overall centroid

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate a = average distance of i to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by
$$s = 1 - a/b \quad \text{if } a < b, \quad (\text{or } s = b/a - 1 \quad \text{if } a \geq b, \text{ not the usual case})$$
 - Typically between 0 and 1.
 - The closer to 1 the better.
- Can calculate the Average Silhouette width for a cluster or a clustering



External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the ‘probability’ that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_j$, where m_j is the number of values in cluster j and m_{ij} is the number of values of class i in cluster j . Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^L p_{ij} \log_2 p_{ij}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster weighted by the size of each cluster, i.e., $e = \sum_{i=1}^K \frac{m_i}{m} e_j$, where m_j is the size of cluster j , K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j , is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^K \frac{m_i}{m} purity_j$.

Final Comment on Cluster Validity

“The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes