
1

Artificial Intelligence
and Machine Learning

Association Analysis

2

What Is Association?

n Association rule:
q Finding frequent patterns, associations,

correlations, or causal structures among sets of
items or objects in transaction databases,
relational databases, and other information
repositories.

q Frequent patterns and Associations: Given a set
of transactions, find rules that will predict the
occurrence of an item based on the occurrences
of other items in the transaction

3

Definition: Frequent Itemset

n Itemset
q A collection of one or more items

n Example: {Milk, Bread, Diaper}
q k-itemset

n An itemset that contains k items
n Support count (s)

q Frequency of occurrence of an itemset
q E.g. s({Milk, Bread,Diaper}) = 2

n Support
q Fraction of transactions that contain an itemset
q E.g. s({Milk, Bread, Diaper}) = 2/5

n Frequent Itemset
q An itemset whose support is greater than or equal to a minsup

threshold

4

Definition: Association Rule

n Association Rule
q An implication expression of the form X ® Y, where X and

Y are itemsets
q Meaning: if a basket contains X then it is likely to contain Y.

n Examples.
q Rule form:

“Body ® Head [support, confidence]”.
q buys(x, “diapers”)

® buys(x, “beers”) [0.5%, 60%]
q major(x, “CS”) ^ takes(x, “DB”)

® grade(x, “A”) [1%, 75%]

5

Rule Evaluation Metrics : Support and
Confidence
n Support (S)

q Fraction of transactions that contain both X and Y

n Confidence (C)
q Measures how often items in Y appear in transactions that

contain X
n Interest (I)

q The interest of an association rule X->Y is the absolute
value of the amount by which the confidence differs from
the probability of Y.

6

Relationships Among Measures

n Rules with high support and confidence may
be useful even if they are not “interesting.”
q We don’t care if buying bread causes people to

buy milk, or whether simply a lot of people buy
both bread and milk.

n But high interest suggests a cause that might
be worth investigating.

7

Example

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Beer}Diaper,Milk{ Þ

S = s(Milk, Diaper, Beer)/|T|
= 2/5 = 0.4

C = s(Milk, Diaper, Beer)
/ s(Milk, Diaper)

= 2/3 = 0.67

I = |C - s(Beer)/|T| |
= | 0.67 – 3/5 |
= 0.07

8

Association Task

n Given:
q A large set of transactions
q Each transaction is a list of items (purchased by a

customer in a transaction)
n Find: all rules having

q support ≥ minsup threshold
q confidence ≥ minconf threshold

9

The Market-Basket Model

n A large set of items, e.g., things sold in a
supermarket.

n A large set of baskets, each of which is a
small set of the items, e.g., the things one
customer buys in one transaction.

10

Applications --- (1)

n Real market baskets: chain stores keep
terabytes of information about what
customers buy together.
q Tells how typical customers navigate stores, lets

them position tempting items.
q Suggests tie-in “tricks,” e.g., run sale on diapers

and raise the price of beer.

11

Applications --- (2)

n “Baskets” = documents; “items” = words in
those documents.
q Lets us find words that appear together unusually

frequently, i.e., linked concepts.
n “Baskets” = sentences, “items” = documents

containing those sentences.
q Items that appear together too often could

represent plagiarism.

12

Applications --- (3)

n “Baskets” = Web pages; “items” = linked
pages.
q Pairs of pages with many common references

may be about the same topic.
n “Baskets” = Web pages p ; “items” = pages

that link to p .
q Pages with many of the same links may be

mirrors or about the same topic.

13

Important Point

n “Market Baskets” is an abstraction that
models any many-many relationship between
two concepts: “items” and “baskets.”
q Items need not be “contained” in baskets.

n The only difference is that we count co-
occurrences of items related to a basket, not
vice-versa.

14

Association Approaches

n Brute-force approach:
q List all possible association rules
q Compute the support and confidence for each rule
q Prune rules that fail the minsup and minconf

thresholds
Þ Computationally prohibitive!

15

Association Approaches

n Two-step approach:
q Frequent Itemset Generation

n Generate all itemsets whose support ³ minsupport
q Rule Generation

n Generate high confidence rules from each frequent
itemset, where each rule is a binary partitioning of a
frequent itemset

n Frequent itemset generation is still
computationally expensive

16

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there
are 2d possible
candidate itemsets

17

Frequent Itemset Generation

n Brute-force approach:
q Each itemset in the lattice is a candidate frequent itemset
q Count the support of each candidate by scanning the

database or the files

q Match each transaction against every candidate

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions List of
Candidates

M

w

18

Computation Model

n Typically, data is kept in a “flat file” rather than a
database system.
q Stored on disk.
q Stored basket-by-basket.
q Expand baskets into pairs, triples, etc. as you read baskets.

n The true cost of using disk-resident data is usually
the number of disk I/O’s.

n In practice, association-rule algorithms read the data
in passes --- all baskets read in turn.

n Thus, we measure the cost by the number of passes
an algorithm takes.

19

Main-Memory Bottleneck

n For many frequent-itemset algorithms, main
memory is the critical resource.
q As we read baskets, we need to count something,

e.g., occurrences of pairs.
q The number of different things we can count is

limited by main memory.
q Swapping counts in/out is a disaster.

20

Naive Algorithm (of Counting Pairs)

n Read file once, counting in main memory the
occurrences of each pair.
q Expand each basket of n items into its n (n -1)/2

pairs.
n Fails if (#items)^2 exceeds main memory.

q Remember: #items can be 100K (Wal-Mart) or
10B (Web pages).

21

Details of Main-Memory Counting

n Two approaches:
1. Count all item pairs, using a triangular matrix.
2. Keep a table of triples [i, j, c] = the count of the

pair of items {i,j } is c.
n 1 requires only (say) 4 bytes/pair.
n 2 requires 12 bytes, but only for those pairs

with count > 0.

22

Frequent Itemset Generation Strategies

n Complexity ~ O(NMw) => Expensive since M = 2d !!!
n Reduce the number of candidates (M)

q Complete search: M=2d

q Use pruning techniques to reduce M

n Reduce the number of transactions (N)
q Reduce size of N as the size of itemset increases
q Data sampling

n Reduce the number of comparisons (NM)
q Use efficient data structures to store the candidates or

transactions
q No need to match every candidate against every

transaction

23

Reducing Number of Candidates

n A-Priori Algorithm
q If an itemset is frequent, then all of its subsets must also

be frequent
n A-Priori principle holds due to the following property

of the support measure:

q Support of an itemset never exceeds the support of its
subsets

q This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ³ÞÍ"

24

Illustrating A-Priori Principle

Found to
be
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned
supersets

25

A-Priori Algorithm

n A two-pass approach.
n Pass 1: Read baskets and count in main

memory the occurrences of each item.
q Requires only memory proportional to #items.

n Pass 2: Read baskets again and count in
main memory only those pairs both of which
were found in Pass 1 to be frequent.
q Requires memory proportional to square of

frequent items only.

26

A-Priori Algorithm

n Method:
q Let k=1
q Generate frequent itemsets of length 1
q Repeat until no new frequent itemsets are identified

n Generate length (k+1) candidate itemsets from length k
frequent itemsets (Candidate generation step)

n Prune candidate itemsets containing subsets of length k that
are infrequent (Candidate pruning step)

n Count the support of each candidate by scanning the DB
n Eliminate candidates that are infrequent, leaving only those

that are frequent

27

A-Priori Algorithm

n Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=Æ; k++) do
begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with more than min_support
end

return Èk Lk;

28

The bottleneck of A-Priori

n candidate generation and support counting
q Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets
q Use database scan and pattern matching to collect counts for the

candidate itemsets
q Huge candidate sets:

n 104 frequent 1-itemset will generate 107 candidate 2-itemsets
n To discover a frequent pattern of size 100, e.g., {a1, a2, …,

a100}, one needs to generate 2100 » 1030 candidates.
q Multiple scans of database:

n Needs (n +1) scans, n is the length of the longest pattern

29

Reducing Number of Comparisons
n Candidate counting:

q Scan the database of transactions to determine
the support of each candidate itemset

q To reduce the number of comparisons, store the
candidates in a hash structure
n Instead of matching each transaction against every

candidate, match it against candidates contained in the
hashed buckets

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs
3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer
5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

30

Generate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose we have 15 candidate itemsets of length 3:
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
Suppose we have one transaction of length 5 contains: {1, 2, 4, 6, 8}

You need:
• Hash function

• Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

31

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on
1, 4 or 7

32

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on
2, 5 or 8

33

Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on
3, 6 or 9

34

Subset Operation

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what
are the possible subsets of
size 3?

35

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction

36

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

37

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15
candidates

38

Factors Affecting Complexity (I)

n Choice of minimum support threshold
q Lowering support threshold results in more

frequent itemsets
q This may increase number of candidates and max

length of frequent itemsets
n Dimensionality (number of items) of the data

set
q More space is needed to store support count of

each item
q If number of frequent items also increases, both

computation and I/O costs may also increase

39

Factors Affecting Complexity (II)

n Size of database
q Since A-priori makes multiple passes, run time of

algorithm may increase with number of
transactions

n Average transaction width
q Transaction width increases with denser data sets
q This may increase max length of frequent

itemsets and traversals of hash tree (number of
subsets in a transaction increases with its width)

40

Alternative: Tree Projection
Set enumeration tree: null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Possible Extension:
E(A) = {B,C,D,E}

Possible Extension:
E(ABC) = {D,E}

41

Tree Projection

n Items are listed in lexicographic order
n Each node P stores the following information:

q Itemset for node P
q List of possible lexicographic extensions of P:

E(P)
q Pointer to projected database of its ancestor node
q Bitvector containing information about which

transactions in the projected database contain the
itemset

42

Projected Database

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

TID Items
1 {B}
2 {}
3 {C,D,E}
4 {D,E}
5 {B,C}
6 {B,C,D}
7 {}
8 {B,C}
9 {B,D}
10 {}

Original Database:
Projected Database
for node A:

For each transaction T, projected transaction at node A is T Ç E(A)

43

ECLAT
n For each item, store a list of transaction ids (tids)

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D

10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

TID-list

44

ECLAT
n Determine support of any k-itemset by intersecting tid-

lists of two of its (k-1) subsets.

n Advantage: very fast support counting
n Disadvantage: intermediate tid-lists may become too

large for memory

AB
1
5
7
8

B
1
2
5
7
8
10

A
1
4
5
6
7
8
9

Ù ®

45

Alternative Method for Generating
Frequent Itemset --- FP-Growth
n Compress a large database into a compact,

Frequent-Pattern tree (FP-tree) structure
q highly condensed, but complete for frequent pattern finding
q avoid costly database scans

n Develop an efficient, FP-tree-based frequent pattern
finding method
q A divide-and-conquer methodology
q Avoid candidate generation

46

FP-tree construction

null

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 0.5

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:
1. Scan DB once, find frequent

1-itemset (single item
pattern)

2. Order frequent items in
frequency descending order

3. Scan DB again, construct
FP-tree

47

Benefits of the FP-tree Structure

n Completeness:
q never breaks a long pattern of any transaction
q preserves complete information for frequent pattern finding

n Compactness
q reduce irrelevant information—infrequent items are gone
q frequency descending ordering: more frequent items are

more likely to be shared
q never be larger than the original database (if not count

node-links and counts)

48

Finding Frequent Patterns Using FP-tree

n General idea (divide-and-conquer)
q Recursively grow frequent pattern path using the FP-tree

n Method
q For each item, construct its conditional pattern-base, and

then its conditional FP-tree
q Repeat the process on each newly created conditional FP-

tree
q Until the resulting FP-tree is empty, or it contains only one

path (single path will generate all the combinations of its sub-
paths, each of which is a frequent pattern)

49

Major Steps to Construct FP-tree

1) Construct conditional pattern base for each node
in the FP-tree

2) Construct conditional FP-tree from each
conditional pattern-base

3) Recursively construct conditional FP-trees and
grow frequent patterns obtained so far

§ If the conditional FP-tree contains a single path, simply
enumerate all the patterns

50

Step 1: From FP-tree to Conditional
Pattern Base
n Starting at the frequent header table in the FP-tree
n Traverse the FP-tree by following the link of each frequent item
n Accumulate all of transformed prefix paths of that item to form a

conditional pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

51

Properties of FP-tree for Conditional
Pattern Base Construction

n Node-link property
q For any frequent item ai, all the possible frequent patterns

that contain ai can be obtained by following ai's node-links,
starting from ai's head in the FP-tree header

n Prefix path property
q To calculate the frequent patterns for a node ai in a path P,

only the prefix sub-path of ai in P need to be accumulated,
and its frequency count should carry the same count as
node ai.

52

Step 2: Construct Conditional FP-tree
n For each pattern-base

q Accumulate the count for each item in the base
q Construct the FP-tree for the frequent items of the

pattern base

m-conditional
pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

Ú Ú

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

53

Finding Frequent Patterns by Creating
Conditional Pattern-Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p
Conditional FP-treeConditional pattern-baseItem

54

Step 3: Recursively Construct the
conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3
cam-conditional FP-tree

55

Single FP-tree Path Generation

n Suppose an FP-tree T has a single path P
n The complete set of frequent pattern of T can be

generated by enumeration of all the combinations of
the sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns
concerning m
m,
fm, cm, am,
fcm, fam, cam,
fcam

Ú

56

Principles of Frequent Pattern Growth

n Pattern growth property
q Let a be a frequent itemset in DB, B be a's conditional

pattern base, and b be an itemset in B. Then a È b is a
frequent itemset in DB iff b is frequent in B.

n “abcdef ” is a frequent pattern, if and only if
q “abcde ” is a frequent pattern, and
q “f ” is frequent in the set of transactions containing “abcde”

57

Why Is FP Growth Fast?

n Our performance study shows
q FP-growth is an order of magnitude faster than Apriori,

and is also faster than tree-projection

n Reasoning
q No candidate generation, no candidate test

q Use compact data structure

q Eliminate repeated database scan

q Basic operation is counting and FP-tree building

58

FP-growth vs. Apriori: Scalability With
the Support Threshold

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(s

ec
.)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

59

FP-growth vs. Tree-Projection: Scalability
with Support Threshold

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Support threshold (%)

Ru
nt

im
e

(s
ec

.)

D2 FP-growth
D2 TreeProjection

Data set T25I20D100K

60

Rule Generation

n Given a frequent itemset L, find all non-empty
subsets f Ì L such that f ® L – f satisfies the
minimum confidence requirement
q If {A,B,C,D} is a frequent itemset, candidate rules:

ABC ®D, ABD ®C, ACD ®B, BCD ®A,
A ®BCD, B ®ACD, C ®ABD, D ®ABC
AB ®CD, AC ® BD, AD ® BC, BC ®AD,
BD ®AC, CD ®AB,

n If |L| = k, then there are 2k – 2 candidate
association rules (ignoring L ® Æ and Æ ®
L)

61

Rule Generation

n How to efficiently generate rules from
frequent itemsets?
q In general, confidence does not have an anti-

monotone property
c(ABC ®D) can be larger or smaller than c(AB ®D)

q But confidence of rules generated from the same
itemset has an anti-monotone property

q e.g., L = {A,B,C,D}:
c(ABC ® D) ³ c(AB ® CD) ³ c(A ® BCD)

n Confidence is anti-monotone w.r.t. number of items on
the RHS of the rule

62

Rule Generation for A-Priori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low
Confidence
Rule

63

Rule Generation for A-Priori Algorithm

n Candidate rule is generated by merging two
rules that share the same prefix
in the rule consequent

n join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

n Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC

64

Presentation of Association Rules (Table Form)

65

Visualization of Association Rule Using Plane Graph

66

Visualization of Association Rule Using Rule Graph

67

Effect of Support Distribution

n Many real data sets have skewed support
distribution

Support
distribution of
a retail data set

68

Effect of Support Distribution

n How to set the appropriate minsup threshold?
q If minsup is set too high, we could miss itemsets

involving interesting rare items (e.g., expensive
products)

q If minsup is set too low, it is computationally
expensive and the number of itemsets is very
large

n Using a single minimum support threshold
may not be effective

69

Multiple Minimum Support

n How to apply multiple minimum supports?
q MS(i): minimum support for item i
q e.g.: MS(Milk)=5%, MS(Coke) = 3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%
q MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))

= 0.1%
q Challenge: Support is no longer anti-monotone

n Suppose: Support(Milk, Coke) = 1.5% and
Support(Milk, Coke, Broccoli) = 0.5%

n {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is
frequent

70

Multiple Minimum Support

A

Item MS(I) Sup(I)

A 0.10% 0.25%

B 0.20% 0.26%

C 0.30% 0.29%

D 0.50% 0.05%

E 3% 4.20%

B

C

D

E

AB

AC

AD

AE

BC

BD

BE

CD

CE

DE

ABC

ABD

ABE

ACD

ACE

ADE

BCD

BCE

BDE

CDE

71

Multiple Minimum Support

A

B

C

D

E

AB

AC

AD

AE

BC

BD

BE

CD

CE

DE

ABC

ABD

ABE

ACD

ACE

ADE

BCD

BCE

BDE

CDE

Item MS(I) Sup(I)

A 0.10% 0.25%

B 0.20% 0.26%

C 0.30% 0.29%

D 0.50% 0.05%

E 3% 4.20%

72

Multiple Minimum Support

n Order the items according to their minimum
support (in ascending order)
q e.g.: MS(Milk)=5%, MS(Coke) = 3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%
q Ordering: Broccoli, Salmon, Coke, Milk

n Need to modify A-Priori such that:
q L1 : set of frequent items
q F1 : set of items whose support is ³ MS(1)

where MS(1) is mini(MS(i))
q C2 : candidate itemsets of size 2 is generated from F1

instead of L1

73

Multiple Minimum Support
n Modifications to A-Priori:

q In traditional A-Priori,
n A candidate (k+1)-itemset is generated by merging two

frequent itemsets of size k
n The candidate is pruned if it contains any infrequent subsets

of size k
q Pruning step has to be modified:

n Prune only if subset contains the first item
n e.g.: Candidate={Broccoli, Coke, Milk}

(ordered according to minimum support)
n {Broccoli, Coke} and {Broccoli, Milk} are frequent but

{Coke, Milk} is infrequent
q Candidate is not pruned because {Coke,Milk} does not

contain the first item, i.e., Broccoli.

74

Pattern Evaluation

n Association rule algorithms tend to produce
too many rules
q many of them are uninteresting or redundant
q Redundant if {A,B,C} ® {D} and {A,B} ® {D}

have same support & confidence
n Interestingness measures can be used to

prune/rank the derived patterns
n In the original formulation of association

rules, support & confidence are the only
measures used

75

Application of Interestingness Measure
Interestingness

Measures

76

Computing Interestingness Measure
n Given a rule X ® Y, information needed to compute rule

interestingness can be obtained from a contingency table

Y Y
X f11 f10 f1+

X f01 f00 fo+

f+1 f+0 |T|

Contingency table for X ® Y
f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Used to define various measures

! support, confidence, lift, Gini,
J-measure, etc.

77

Drawback of Confidence

Coffee Coffee
Tea 15 5 20
Tea 75 5 80

90 10 100

Association Rule: Tea ® Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
Þ Although confidence is high, rule is misleading
Þ P(Coffee|Tea) = 0.9375

78

Statistical Independence

n Population of 1000 students
q 600 students know how to swim (S)
q 700 students know how to bike (B)
q 420 students know how to swim and bike (S,B)

q P(SÙB) = 420/1000 = 0.42
q P(S) ´ P(B) = 0.6 ´ 0.7 = 0.42

q P(SÙB) = P(S) ´ P(B) => Statistical independence
q P(SÙB) > P(S) ´ P(B) => Positively correlated
q P(SÙB) < P(S) ´ P(B) => Negatively correlated

79

Statistical-based Measures

n Measures that take into account statistical
dependence

)](1)[()](1)[(
)()(),(

)()(),(
)()(
),(

)(
)|(

YPYPXPXP
YPXPYXPtcoefficien

YPXPYXPPS
YPXP
YXPInterest

YP
XYPLift

--
-

=-

-=

=

=

f

80

Example: Lift/Interest

Coffee Coffee
Tea 15 5 20
Tea 75 5 80

90 10 100

Association Rule: Tea ® Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
Þ Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

81

Drawback of Lift & Interest

Y Y
X 10 0 10
X 0 90 90

10 90 100

Y Y
X 90 0 90
X 0 10 10

90 10 100

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

Statistical independence:

If P(X,Y)=P(X)P(Y) => Lift = 1

82

Properties of A Good Measure

n There are lots of measures proposed in the
literature

n Piatetsky-Shapiro:
3 properties a good measure M must satisfy:
q M(A,B) = 0 if A and B are statistically independent
q M(A,B) increase monotonically with P(A,B) when

P(A) and P(B) remain unchanged
q M(A,B) decreases monotonically with P(A) [or

P(B)] when P(A,B) and P(B) [or P(A)] remain
unchanged

83

Subjective Interestingness Measure

n Objective measure:
q Rank patterns based on statistics computed from data
q e.g., 21 measures of association (support, confidence,

Laplace, Gini, mutual information, Jaccard, etc).

n Subjective measure:
q Rank patterns according to user’s interpretation

n A pattern is subjectively interesting if it contradicts the
expectation of a user

n A pattern is subjectively interesting if it is actionable

84

Interestingness via Unexpectedness
n Need to model expectation of users (domain

knowledge)

n Need to combine expectation of users with evidence
from data (i.e., extracted patterns)

+ Pattern expected to be frequent

- Pattern expected to be infrequent

Pattern found to be frequent

Pattern found to be infrequent

+
-

Expected Patterns-
+ Unexpected Patterns

