Artificial Intelligence
and Machine Learning

Association Analysis



What Is Association?

Association rule:

2 Finding frequent patterns, associations,
correlations, or causal structures among sets of
items or objects in transaction databases,
relational databases, and other information
repositories.

a Frequent patterns and Associations: Given a set
of transactions, find rules that will predict the
occurrence of an item based on the occurrences
of other items in the transaction



Detinition: Frequent Itemset

Itemset

o A collection of one or more items
Example: {Milk, Bread, Diaper}

o k-itemset
An itemset that contains k items

Support count (o)

o Frequency of occurrence of an itemset

o E.g. o({Milk, Bread,Diaper}) = 2

Support

o Fraction of transactions that contain an itemset
o E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

o An itemset whose support is greater than or equal to a minsup
threshold



Definition: Association Rule

Association Rule

o An implication expression of the form X — Y, where X and
Y are itemsets

o Meaning: if a basket contains X then it is likely to contain Y.

Examples.
2 Rule form:
“Body — Head [support, confidence]”.
QO buys(x, “diapers”)
— buys(x, “beers”) [0.5%, 60%]
a major(x, “CS”) A takes(x, “DB”)
— grade(x, “A”) [1%, 75%]



Rule Evaluation Metrics : Support and
Confidence

Support (S)
o Fraction of transactions that contain both X and Y

Confidence (C)

o Measures how often items in Y appear in transactions that
contain X

Interest (1)

o The interest of an association rule X->Y is the absolute
value of the amount by which the confidence differs from
the probability of Y.



Relationships Among Measures

Rules with high support and confidence may
be useful even if they are not “interesting.”

o We don’t care if buying bread causes people to
buy milk, or whether simply a lot of people buy
both bread and milk.

But high interest suggests a cause that might

be worth investigating.



Example

TID Items
1 Bread, Milk
2 Bread, Diaper, Beer, Eggs S = o(Milk, Diaper, Beer)/|T|
3 | Milk, Diaper, Beer, Coke =2/5=0.4
4 Bread, Milk, Diaper, Beer C = o(Milk, Diaper, Beer)
5 Bread, Milk, Diaper, Coke / o(Milk, Diaper)
= 2/3 = 0.67
I =|C- o(Beer)/|T| |
{Milk, Diaper} = Beer =0.67 -3/5|

0.07



Association Task

Given:
o A large set of transactions

o Each transaction is a list of items (purchased by a
customer in a transaction)

Find: all rules having

o support = minsup threshold
o confidence = minconf threshold



The Market-Basket Model

A large set of items, e.g., things sold in a
supermarket.

A large set of baskets, each of which is a
small set of the items, e.g., the things one
customer buys in one transaction.



Applications --- (1)

Real market baskets: chain stores keep
terabytes of information about what
customers buy together.

o Tells how typical customers navigate stores, lets
them position tempting items.

0 Suggests tie-in “tricks,” e.g., run sale on diapers
and raise the price of beer.

10



Applications --- (2)

“Baskets” = documents: “items” = words in
those documents.

0 Lets us find words that appear together unusually
frequently, i.e., linked concepts.

“Baskets” = sentences, “items” = documents
containing those sentences.

o ltems that appear together too often could
represent plagiarism.

11



Applications --- (3)

“‘Baskets” = Web pages; “items” = linked

pages.

o Pairs of pages with many common references
may be about the same topic.

“Baskets” = Web pages p ; “items” = pages
that link to p .

o Pages with many of the same links may be
mirrors or about the same topic.

12



Important Point

“Market Baskets” is an abstraction that
models any many-many relationship between
two concepts: “items” and “baskets.”

o Iltems need not be “contained” in baskets.

The only difference is that we count co-
occurrences of items related to a basket, not
vice-versa.

13



Association Approaches

Brute-force approach:
o List all possible association rules
o Compute the support and confidence for each rule

2 Prune rules that fail the minsup and minconf
thresholds

= Computationally prohibitive!

14



Association Approaches

Two-step approach:
o Frequent Iltemset Generation

Generate all itemsets whose support > minsupport
o Rule Generation

Generate high confidence rules from each frequent
itemset, where each rule is a binary partitioning of a
frequent itemset

Frequent itemset generation is still
computationally expensive

15



Frequent Itemset Generation

Given d items, there
are 29 possible

candidate itemsets

16



‘ Frequent Itemset Generation

= Brute-force approach:
o Each itemset in the lattice is a candidate frequent itemset

o Count the support of each candidate by scanning the
database or the files

Transactions

List of
Candidates

7D

Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

A

Z
NN

Bread, Milk, Diaper, Coke

“«—Z—>

-+ WV

P

o Match each transaction against every candidate

17



Computation Model

Typically, data is kept in a “flat file” rather than a
database system.

o Stored on disk.
o Stored basket-by-basket.
o Expand baskets into pairs, triples, etc. as you read baskets.

The true cost of using disk-resident data is usually
the number of disk I/O'’s.

In practice, association-rule algorithms read the data
In passes --- all baskets read in turn.

Thus, we measure the cost by the number of passes
an algorithm takes.

18



Main-Memory Bottleneck

For many frequent-itemset algorithms, main
memory is the critical resource.

o As we read baskets, we need to count something,
e.g., occurrences of pairs.

o The number of different things we can count is
limited by main memory.

0 Swapping counts in/out is a disaster.

19



Natve Algorithm (of Counting Pairs)

Read file once, counting in main memory the
occurrences of each pair.

o Expand each basket of n items into its n (n -1)/2
pairs.
Fails if (#items)*2 exceeds main memory.

o Remember: #items can be 100K (Wal-Mart) or
10B (Web pages).

20



Details of Main-Memory Counting

Two approaches:

1. Count all item pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = the count of the
pair of items {i,j } is C.

1 requires only (say) 4 bytes/pair.

2 requires 12 bytes, but only for those pairs
with count > 0.

21



Frequent Itemset Generation Strategies

Complexity ~ O(NMw) => Expensive since M = 29 Il
Reduce the number of candidates (M)

o Complete search: M=2¢
o Use pruning techniques to reduce M

Reduce the number of transactions (N)

o Reduce size of N as the size of itemset increases
o Data sampling

Reduce the number of comparisons (NM)

o Use efficient data structures to store the candidates or
transactions

o No need to match every candidate against every
transaction

22



Reducing Number of Candidates

A-Priori Algorithm

o If an itemset is frequent, then all of its subsets must also
be frequent

A-Priori principle holds due to the following property
of the support measure:

VX,Y (X CY)= s(X) > s(Y)

o Support of an itemset never exceeds the support of its
subsets

o This is known as the anti-monotone property of support

23



Prior1 Principle

Tlustrating A-

- = -
- - I"“

t
o &
T T
3 o &
w o £

supersets




A-Priori Algorithm

A two-pass approach.

Pass 1. Read baskets and count in main
memory the occurrences of each item.

10 Requires only memory proportional to #items.
Pass 2: Read baskets again and count in

main memory only those pairs both of which
were found in Pass 1 to be frequent.

0 Requires memory proportional to square of
frequent items only.

25



A-Priori Algorithm

Method:
0 Let k=1
o Generate frequent itemsets of length 1

o Repeat until no new frequent itemsets are identified

Generate length (k+1) candidate itemsets from length k
frequent itemsets (Candidate generation step)

Prune candidate itemsets containing subsets of length k that
are infrequent (Candidate pruning step)

Count the support of each candidate by scanning the DB

Eliminate candidates that are infrequent, leaving only those
that are frequent

26



A-Priori Algorithm

Pseudo-code:
C,. Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for (k=1; L, '=0; k++) do
begin
C.., = candidates generated from L,;
for each transaction t in database do
increment the count of all candidates in C,,,
that are contained in t
L,.; = candidates in C,,, with more than min_support
end
return U, L;;

27



The bottleneck of _4-Prior:

candidate generation and support counting

Q

Use frequent (k — 1)-itemsets to generate candidate frequent k-
itemsets

Use database scan and pattern matching to collect counts for the
candidate itemsets

Huge candidate sets:

10% frequent 1-itemset will generate 107 candidate 2-itemsets

To discover a frequent pattern of size 100, e.g., {a,, a,, ...,
a400}, ONe needs to generate 210~ 103° candidates.

Multiple scans of database:
Needs (n +7 ) scans, n is the length of the longest pattern

28



Reducing Number of Comparisons

Candidate counting:

o Scan the database of transactions to determine
the support of each candidate itemset

o To reduce the number of comparisons, store the
candidates in a hash structure
Instead of matching each transaction against every

candidate, match it against candidates contained in the
hashed buckets

Transactions Hash Structure

1D | Items

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

N AW -

«— x—>

“«—Z—>

Buckets

29



Generate Hash Tree

Suppose we have 15 candidate itemsets of length 3:

{145),{124},{457},{125)},{458)}, {159}, {136}, {234)},{567},{345),
{356),{357),{689},{367},{368}

Suppose we have one transaction of length 5 contains: {1, 2, 4, 6, 8}

You need:
 Hash function

» Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

234
567

3,6,9
L@}/T\\\ 145 %345 356 367
2,5.8 357 368
124 689

457 125 159
458

Hash function

30



‘ Association Rule Discovery: Hash tree

Hash Function

Candidat

sh Tree

1,4,7 3,6,9
25,8
145
Hash on
1,4 or7
124
457

367

234
567
136 I'"""""'
345 356
""""""" 357

368

31



‘ Association Rule Discovery: Hash tree

Hash Function

14,7

2,5,8

Hash on
2,50r8

3,6,9

145

Candidat

sh Tree

136

_____________

___________________________________

_______________________________

367

368

32



‘ Association Rule Discovery: Hash tree

Hash Function

Candidat sh Tree

1,4,7 3,6,9
25,8
234
567
145 136 || N
et 11345 356 367
Hash on :
3,60r9 e i 357 368
124 11125 | [159 ] Ekl
457 458 mommmmeeee L TTTTTTT oI T oI

33



Subset Operation

Given a transaction t, what
are the possible subsets of

size 37? Transaction, t

12356

123
125 135 156 235 256 356
120 136 236

Level 3 Subsets of 3 items

34



Subset Operation Using Hash Tree

1+

2356

124
457

12356

l

transaction

2+

356

125

458

159

689

Hash Function

14,7

2,5,8

3,6,9

35



Subset Operation Using Hash Tree

1 2 35 6 | transaction
: |
1+[2356 2+356
12+1356
3+|56
234
15+16 .
145 136
345 356 367
357 368
1241|125/ L159 689
4571(458

Hash Function

14,7 3,6,9

2,5,8

36



Subset Operation Using Hash Tree

12+

356

13+

56

15+

1 H

2356

145

12356

124

159

125

457

458

234

transaction
2H356
3H56
—
345 356 367
357 368
689

Hash Function

1.4, 3,6,9
2,5,8

Match transaction against 11 out of 15
candidates

37



Factors Atfecting Complexity (I)

Choice of minimum support threshold

o Lowering support threshold results in more
frequent itemsets

o This may increase number of candidates and max
length of frequent itemsets

Dimensionality (number of items) of the data
set

a2 More space is needed to store support count of
each item

o If number of frequent items also increases, both
computation and I/O costs may also increase

38



Factors Atfecting Complexity (1I)

Size of database

o Since A-priori makes multiple passes, run time of
algorithm may increase with number of
transactions

Average transaction width

o Transaction width increases with denser data sets

o This may increase max length of frequent
itemsets and traversals of hash tree (number of
subsets in a transaction increases with its width)

39



Alternative: Tree Projection

Set enumeration tree: (n)

Possible Extension: _— ° ° ° ° G

E(A) = {B,C,D,E}

(ec) (o) (ae5) (aco) () (oE) (eco) (ece) (aoe) (cog)
e

Possible Extension:

E(ABC) = {D,E}
e coeacoe.

40



Tree Projection

Items are listed in lexicographic order

Each node P stores the following information:

0 ltemset for node P

o List of possible lexicographic extensions of P:
E(P)

o Pointer to projected database of its ancestor node

o Bitvector containing information about which
transactions in the projected database contain the

itemset

41



Projected Database

Projected Database

Original Database: for node A:

TID ltems TID ltems
1 {A,B} 1 {B}
2 {B,C,D} 2 {}
3 {A,C,D,E} 3 {C,D,E}
4 {A,D,E} 4 {D,E}
3 {A,B,C} 3) {B,C}
6 {A,B,C,D} §) {B,C,D}
7 {B,C} 7 {}
8 {A,B,C} 8 {B,C}
9 {A,B,D} 9 {B,D}
10 {B,C,E} 10 {}

For each transaction T, projected transaction at node Ais T N E(A)



BECLAT

For each item, store a list of transaction ids (tids)

Horizontal

Data Layout

ltems

Vertical Data Layout

—
—
OCOOO\ICDO'I-POOI\J—\G

AB,E
B,C,D
C,E
A,C.D
A.B,C,D
AE

AB
AB,C
A,C.D

B

A | B|]C | D E
1 1 2 2 1
4 2 3 4 3
S) 5 4 S) 6
6 7 8 9
7 8 9
8 | 10
9
l
TID-list

43



BECLAT

Determine support of any k-itemset by intersecting tid-
lists of two of its (k-1) subsets.

i B AB
. | 1
= N g - 5
6 7 /
7 8 8
8 10

9

Advantage: very fast support counting

Disadvantage: intermediate tid-lists may become too
large for memory



Alternative Method for Generating
Frequent Itemset --- FP-Growth

Compress a large database into a compact,
Frequent-Pattern tree (FP-tree) structure

o highly condensed, but complete for frequent pattern finding

o avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern
finding method

o A divide-and-conquer methodology

o Avoid candidate generation

45



FP-tree construction

TID Items bought

(ordered) frequent items

100 {f, a, ¢, d, g, i, m, p}
200 {a, b, ¢, f, I, m, 0}
300 b, f; h, j, 0}

400 {b, ¢, k, s, p}

500 {a, f, ¢, e, I, p, m, n}

Steps:

1.

Scan DB once, find frequent
1-itemset (single item
pattern)

Order frequent items in
frequency descending order

Scan DB again, construct
FP-tree

{f, ¢, a, m, p}
{f, ¢, a, b, m}

min_support = 0.5

. b}

{¢, b, p}

{ﬁ ¢ a, m, P}

null
Header Table
Item frequency head //’"’f-'4 -7 c:1
S/ 4 ——1 / |
C 4 ——+=>|c:31| b: 13 b:1
a 3 - | 0 |
b 3 T a3 | p:d
m 3 | 7 i
p 3  em:2{Peet|
\ T
o
Sp2ym:l

46



Benetits of the FP-tree Structure

Completeness:
o never breaks a long pattern of any transaction
o preserves complete information for frequent pattern finding

Compactness

o reduce irrelevant information—infrequent items are gone

o frequency descending ordering: more frequent items are
more likely to be shared

o never be larger than the original database (if not count
node-links and counts)

47



Finding Frequent Patterns Using FP-tree

General idea (divide-and-conquer)
o Recursively grow frequent pattern path using the FP-tree

Method

o For each item, construct its conditional pattern-base, and
then its conditional FP-tree

o Repeat the process on each newly created conditional FP-
tree

o Until the resulting FP-tree is empty, or it contains only one

path (single path will generate all the combinations of its sub-
paths, each of which is a frequent pattern)

48



Major Steps to Construct FP-tree

Construct conditional pattern base for each node
In the FP-tree

Construct conditional FP-tree from each

conditional pattern-base

Recursively construct conditional FP-trees and
grow frequent patterns obtained so far

= |f the conditional FP-tree contains a single path, simply
enumerate all the patterns

49



Step 1: From FP-tree to Conditional

Pattern Base
Starting at the frequent header table in the FP-tree
Traverse the FP-tree by following the link of each frequent item

Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Header Table 0
Item frequency head /’/>f'4 o Conditional pattern bases
S/ 4 -—T et : item____cond. pattern base
¢ j T e bas bl | e f:3
a =~
S | | ]
b ? ::\5\ a:3| | |p:1 “4 Je:3
m ; e = b fea:1, f:1, c:1
N H 1
z 2 ml.'2 K ‘;] /// m fea:2, fcab:1
\ | —=—I"
s p:2Nm:l p feam:2, cb:1




Properties of FP-tree for Conditional
Pattern Base Construction

Node-link property

o For any frequent item a,, all the possible frequent patterns
that contain a; can be obtained by following a;'s node-links,
starting from a;'s head in the FP-tree header

Prefix path property

o To calculate the frequent patterns for a node a; in a path P,
only the prefix sub-path of a;,in P need to be accumulated,
and its frequency count should carry the same count as
node a;.

51



Step 2: Construct Conditional FP-tree

For each pattern-base
o Accumulate the count for each item in the base
o Construct the FP-tree for the frequent items of the

pattern base

Header Table

Item frequency head
f 4 __
c 4 —=
a 3 ~~
b 3 -
m 3 . b
p 3 )

I/‘?'—' /
il

m-conditional
pattern base:
fea:2, fcab:1

All frequent patterns
{} concerning m

| m,
> f:3 -> fm, cm, am,
| fem, fam, cam,

c:3 fcam
|

a:3

m-conditional FP-tree

52



Finding Frequent Patterns by Creating

Conditional Pattern-Bases

ltem | Conditional pattern-base | Conditional FP-tree
P {(fcam:2), (cb:1)} {(c:3)}p
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)}|m
b {(fca:1), (f:1), (c:1)} Empty
a {(fc:3)} {(f:3, c:3)}|a
C {(f:3)} {(f:3)}c
f Empty Empty

53




Step 3: Recursively Construct the
conditional FP-tree

U
|
0 Cond. pattern base of “am”: (fc:3) f:3
| |
£3 c:3
| am-conditional FP-tree
c:3 {}
| Cond. pattern base of “cm”: (f:3) |

m-conditional FP-tree
cm-conditional FP-tree

{l}

13

cam-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

54



Single FP-tree Path Generation

Suppose an FP-tree T has a single path P

The complete set of frequent pattern of T can be
generated by enumeration of all the combinations of
the sub-paths of P

{}

| All frequent patterns
concerning m
3 m
c:3 > Jm, cm, am,
| fem, fam, cam,
a:3

feam

m-conditional FP-tree .



Principles of Frequent Pattern Growth

Pattern growth property

o Let a be a frequent itemset in DB, B be a's conditional
pattern base, and 3 be an itemsetin B. Thena U B isa
frequent itemset in DB iff 3 is frequent in B.

“abcdef” is a frequent pattern, if and only if
o “abcde ” is a frequent pattern, and

o “f”is frequent in the set of transactions containing “abcde”

56



Why Is FP Growth Fast?

Our performance study shows

o FP-growth is an order of magnitude faster than Apriori,
and is also faster than tree-projection

Reasoning

o No candidate generation, no candidate test

o Use compact data structure

o Eliminate repeated database scan

o Basic operation is counting and FP-tree building

57



FP-growth vs. Apriort: Scalability With

the Support Threshold

100 -
90 -
80 -
70 -

Run time(sec.)

30 -
20 -
10 -

0]

60 -
50 -
40 -

Data set T25120D10K

—e— D1 FP-grow th runtime

— —x— — D1 Apriori runtime

\
\
\
X
N
N
N
N
N
N
I f }I_ I S I_ —?
0.5 1 1.5 2 2.5 3

Support threshold(%)

58



FP-growth vs. Tree-Projection: Scalability
with Support Threshold

Data set T25120D 100K

140 7 \ —_ e D2 FP-growth

120 - X — —x — D2 TreeProjection

—
A O @ O
o O O O

Runtime (sec.)

20 -

Support threshold (%)



Rule Generation

Given a frequent itemset L, find all non-empty
subsets f — L such that f » L — f satisfies the
minimum confidence requirement

o If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —-D, ABD —C, ACD —B, BCD —A,
A —-BCD, B ->ACD, C —-ABD, D -ABC
AB -CD, AC — BD, AD — BC, BC —AD,
BD —-AC, CD —AB,

If |L| = k, then there are 2k — 2 candidate
association rules (ignoring L > @ and J —
L)

60



Rule Generation

How to efficiently generate rules from
frequent itemsets?
o In general, confidence does not have an anti-

monotone property
c(ABC —D) can be larger or smaller than c(AB —D)

o But confidence of rules generated from the same
itemset has an anti-monotone property

o e.g., L={AB,C,D}:
c(ABC —» D) > c(AB — CD) > ¢c(A —» BCD)

Confidence is anti-monotone w.r.t. number of items on
the RHS of the rule

61



‘ Rule Generation for A-Priort Algorithm

Lattice of rules

Low -t~
Confiderfce

Rule /J\,

N
Pruned S o ="
Rules ~N e e e e m-=—-—T

62



Rule Generation for A-Priort Algorithm

Candidate rule is generated by merging two
rules that share the same prefix

In the rule consequent
join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

Prune rule D=>ABC If its
subset AD=>BC does not have
high confidence

63



‘ Presentation ot Association Rules (Table Form )

Body | Implies | Head | Supp (%) | Conf(%) | F li=]
1 |cost(x) = 0.00~1000.00" ==> revenue(x) = 0.00~500.00' 28.45 40.4 [ |
2 |cost(x) = 0.00~1000.00' ==>  revenue(x) = 500.00~1000.00 20.46 29.05
3 [cost{x}) = 0.00~1000.00' ==>  order_gty(x) = 0.00~100.00' 59.17 84.04
4  |cost(x) = 0.00~1000.00' ==> revenue(x) = 1000.00~1500.00' 10.45 14.84
5 [cost{x) = 0.00~1000.00' ==>  region{x) = 'United States’ 22.56 32.04
6 |cost(x) = "1000.00~2000.00" ==>  order_gty(x) = 0.00~100.00' 12.91 69.34
7 |order gty(x) = 0.00~100.00" ==> revenue(y) = 0.00~500.00' 28.45 34.54
8 |order gty(x) = 0.00~100.00" | ==>  cost{x) = 1000.00~2000.00" 12.91 15.67
9  |order_gty(x) = 0.00~100.00° ==>  region{x) = 'United States’ 259 31.45
10 |order_gty(x) = 0.00~100.00" ==>  cost{x}) = 0.00~1000.00' 59.17 71.86
11 |order_gty(x) = 0.00~100.00° ==>  product_line(x) = Tents' 13.52 16.42
12 |order_gty(x) = 0.00~100.00" ==>  revenue(x) = 500.00~1000.00' 19.67 23.88
13 [product_line(x) = Tents' ==>  order_gty(x) = 0.00~100.00' 13.52 98.72
14 [region(x) = 'United States' ==>  order_gty(x) = 0.00~100.00' 259 51.94
15 [region(x) = 'United States’ ==>  cost(x) = 0.00~1000.00' 22.56 71.39
16 [revenue(x) = 0.00~500.00' ==> cost(x) = 0.00~1000.00' 28.45 100
17 [revenue(x) = 0.00~500.00' ==>  order_gty(x) = 0.00~100.00" 28.45 100
18 |revenue(x) = 1000.00~1500.00" ==> cost{x}) = 0.00~1000.00' 10.45 96.75
19 |revenue(x) = S00.00~1000.00" ==>  cost(}) = 0.00~1000.00' 20.46 100
20 |revenue(3}) = '500.00~1000.00° ==>  order_gty(x) = 0.00~100.00' 19.67 96.14
21
22
23 |cost(x) = 0.00~1000.00° ==> ’E‘r’degf_eq(t’?(;) E‘%E.'ESE%UDD.D’S.ND 28.45 404
24 |cost(x) = 0.00~1000.00 == ’E‘r’degf_eq(t’?(;) D 28.45 40.4
25 |cost(x) = 0.00~1000.00" ==> ’E‘r’degf_eq(t’;}(;) o Do gar Ao 19.67  27.93
26 |cost(x) = D.00~1000.00° == ’E‘r’degf_eq(t’?(;) o oaDogar Ao 1967  27.93
27 C;ZL(qu-w?);)ﬂi“%?gg;?gu’f‘u“é? ==> revenue(x) = 500.00~1000.00° 19.67 13.23 -
™ sheett / =i )

64



Visualization of Association Rule Using Plane Graph

== ]
=1 |

2 _ -
ﬁ}Eile Mining Associator Yiew ‘Window Options Help

B8] B #| alz 7]

dasdEma®s 2 |

1% -= C
fid : 50.55%]

==>
nder = [M]; [support: 37.06% , confidence

4
<
2

[Mo Promotion]

Rl EI T ES IR

[NUM |

F1

For Help, press

65



Visualization of Association Rule Using Rule Graph

2. DBMiner Enterprise - [#1- Associator]

&Eile Mining Associator Yiew MWindow Options Help - &2 x|

EEECES RSE)

Activated MNeutral Disahled m
[
Size : ‘ Support Qo

£

on
Education Level = [High School Degree] s
& C_f&;:

Marital Status = [M]
Gender = [F]

(23

Gender = [M]

Education Level = [Partial College].

Marital Status (5]

For Help, press F1 INURM

66



FEttect ot Support Distribution

Many real data sets have skewed support
distribution .

1000

Support
distribution of
a retail data set

Support count

500

10° 10" 10° 10° 10* 10°
Sorted items

67



Ettect ot Support Distribution

How to set the appropriate minsup threshold?

o If minsup is set too high, we could miss itemsets
involving interesting rare items (e.g., expensive
products)

o If minsup is set too low, it is computationally
expensive and the number of itemsets is very
large

Using a single minimum support threshold

may not be effective

68



Multiple Minimum Support

How to apply multiple minimum supports?

o MS(i): minimum support for item |
0 e.g..  MS(Milk)=5%, MS(Coke) = 3%,
MS(Broccoli)=0.1%, MS(Salmon)=0.5%
o MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))
=0.1%
o Challenge: Support is no longer anti-monotone

Suppose: Support(Milk, Coke) = 1.5% and
Support(Milk, Coke, Broccoli) = 0.5%

{Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is
frequent

69



Multiple Minimum Support

tem | MS() | Sup() "
A |0.10%0.25% Qw;@
B |0.20%0.26% @\'" g&?‘*&@
\\ﬁqﬁ PO
\\

(AE

JaS ’@' ‘V\@

C 10.30%|0.29% Qw{,\;\@
SO S

D |0.50% | 0.05% ii‘#\\ @\QQ’@
(R e

% |4.200 GA‘“"\

E | 3% |4.20% \@&@




Multiple Minimum Support

Item

MS(I)

Sup(l)

A

0.10%

0.25%

B

0.20%

0.26%

0.30%

0.29%

0.50%

0.05%

3%

4.20%

/” " ARD
6}:’\")@
l: i




Multiple Minimum Support

Order the items according to their minimum

support (in ascending order)

a0 e.g.. MS(Mik)=5%, MS(Coke) = 3%,
MS(Broccoli)=0.1%, MS(Salmon)=0.5%

o Ordering: Broccoli, Salmon, Coke, Milk

Need to modify A-Priori such that:
o L4: set of frequent items

o F4: set of items whose support is > MS(1)
where MS(1) is min,( MS(i) )

o C,: candidate itemsets of size 2 is generated from F,
instead of L,

72



Multiple Minimum Support

Modifications to A-Priori:

a In traditional A-Priori,
A candidate (k+1)-itemset is generated by merging two
frequent itemsets of size k
The candidate is pruned if it contains any infrequent subsets
of size k

o Pruning step has to be modified:
Prune only if subset contains the first item

e.g.. Candidate={Broccoli, Coke, Milk}
(ordered according to minimum support)

{Broccoli, Coke} and {Broccoli, Milk} are frequent but

{Coke, Milk} is infrequent

0 Candidate is not pruned because {Coke,Milk} does not
contain the first item, i.e., Broccoli.

73



Pattern Evaluation

Association rule algorithms tend to produce

too many rules

o many of them are uninteresting or redundant

o Redundant if {A,B,C} —» {D} and {A,B} — {D}
have same support & confidence

Interestingness measures can be used to

prune/rank the derived patterns

In the original formulation of association
rules, support & confidence are the only
measures used

74



‘ Application of Interestingness Measure

Interestingness
Measures

Preprocesse
Data

PPOEPPPPPP
e JREREEEEEES
!

Selected

Data ===

mmmmmmm

Postprocessing

Mining

Preprocessing

Selection

75



Computing Interestingness Measure

Given a rule X =Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X —> Y

f,1: support of X and Y

f.o: support of X and Y
for: support of Xand Y

foo: support of X and Y

Y Y
X i f1o F1s
X fos foo fos
f. fo | ITI

Used to define various measures

+ support, confidence, lift, Gini,
J-measure, etc.

76




Drawback of Confidence

Coffee | Coffee
Tea 15 5 20
Tea 75 3 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

= Although confidence is high, rule is misleading
— P(Coffee|Tea) = 0.9375



Statistical Independence

Population of 1000 students

o 600 students know how to swim (S)
o 700 students know how to bike (B)
o 420 students know how to swim and bike (S,B)

5 P(SAB) = 420/1000 = 0.42
5 P(S)x P(B)=0.6 x 0.7 = 0.42

x P(B) => Statistical independence
o P(SAB) > P(S) x P(B) => Positively correlated
x P(B) => Negatively correlated

78



Statistical-based Measures

Measures that take into account statistical
dependence

P(Y | X)

P(Y)

P(X.Y)
P(X)P(Y)
PS=P(X,Y)- P(X)P(Y)

Lift =

Interest =

. o P(X.,Y)-P(X)P(Y)
¢ — coefficient JPOO[1=P(X)IP(Y)[1- P(Y)]



Example: Lift/Interest

Coffee | Coffee
Tea 15 S 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
= Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)



Drawback of Lift & Interest

Y Y Y Y
X 10 0 10 X 90 0 90
X 0 90 | 90 X 0 10 | 10
10 | 90 | 100 90 10 | 100
. 0.1 09
Lift = =10 Lift = : =1.11
(0.1)(0.1) 4 (0.9)(0.9)

Statistical independence:
If P(X,Y)=P(X)P(Y) => Lift=1



Properties ot A Good Measure

There are lots of measures proposed in the
literature

Piatetsky-Shapiro:
3 properties a good measure M must satisfy:

o M(A,B) =0 if A and B are statistically independent

o M(A,B) increase monotonically with P(A,B) when
P(A) and P(B) remain unchanged

o M(A,B) decreases monotonically with P(A) [or
P(B)] when P(A,B) and P(B) [or P(A)] remain
unchanged

82



Subjective Interestingness Measure

Objective measure:

o Rank patterns based on statistics computed from data

o e.dg., 21 measures of association (support, confidence,
Laplace, Gini, mutual information, Jaccard, etc).

Subjective measure:

o Rank patterns according to user’s interpretation

A pattern is subjectively interesting if it contradicts the
expectation of a user

A pattern is subjectively interesting if it is actionable

83



Interestingness via Unexpectedness
Need to model expectation of users (domain

knowledge)

Domain +
Knowledge Evidence

+

Pattern expected to be frequent

Pattern expected to be infrequent

Pattern found to be frequent

O Pattern found to be infrequent

@ Expected Patterns

@ Unexpected Patterns

Need to combine expectation of users with evidence
from data (i.e., extracted patterns)

84



