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What Is Association?

n Association rule:
q Finding frequent patterns, associations, 

correlations, or causal structures among sets of 
items or objects in transaction databases, 
relational databases, and other information 
repositories.

q Frequent patterns and Associations: Given a set 
of transactions, find rules that will predict the 
occurrence of an item based on the occurrences 
of other items in the transaction
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Definition: Frequent Itemset

n Itemset
q A collection of one or more items

n Example: {Milk, Bread, Diaper}
q k-itemset

n An itemset that contains k items
n Support count (s)

q Frequency of occurrence of an itemset
q E.g.   s({Milk, Bread,Diaper}) = 2 

n Support
q Fraction of transactions that contain an itemset
q E.g.   s({Milk, Bread, Diaper}) = 2/5

n Frequent Itemset
q An itemset whose support is greater than or equal to a minsup

threshold
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Definition: Association Rule

n Association Rule
q An implication expression of the form X ® Y, where X and 

Y are itemsets
q Meaning: if a basket contains X then it is likely to contain Y.

n Examples. 
q Rule form:

“Body ® Head [support, confidence]”.
q buys(x, “diapers”)

® buys(x, “beers”) [0.5%, 60%]
q major(x, “CS”) ^ takes(x, “DB”)

®  grade(x, “A”) [1%, 75%]
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Rule Evaluation Metrics : Support and 
Confidence
n Support (S)

q Fraction of transactions that contain both X and Y

n Confidence (C)
q Measures how often items in Y appear in transactions that 

contain X
n Interest (I)

q The interest of an association rule X->Y is the absolute 
value of the amount by which the confidence differs from 
the probability of Y.
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Relationships Among Measures

n Rules with high support and confidence may 
be useful even if they are not “interesting.”
q We don’t care if buying bread causes people to 

buy milk, or whether simply a lot of people buy 
both bread and milk.

n But high interest suggests a cause that might 
be worth investigating.
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Example

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Beer}Diaper,Milk{ Þ

S = s(Milk, Diaper, Beer)/|T|
= 2/5 = 0.4

C = s(Milk, Diaper, Beer)
/ s(Milk, Diaper)

= 2/3 = 0.67

I = |C - s(Beer)/|T|  |
= | 0.67 – 3/5 |
= 0.07
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Association Task

n Given: 
q A large set of transactions
q Each transaction is a list of items (purchased by a 

customer in a transaction)
n Find: all rules having 

q support ≥ minsup threshold
q confidence ≥ minconf threshold
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The Market-Basket Model

n A large set of items, e.g., things sold in a 
supermarket.

n A large set of baskets, each of which is a 
small set of the items, e.g., the things one 
customer buys in one transaction.
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Applications --- (1)

n Real market baskets: chain stores keep 
terabytes of information about what 
customers buy together.
q Tells how typical customers navigate stores, lets 

them position tempting items.
q Suggests tie-in “tricks,” e.g., run sale on diapers 

and raise the price of beer.
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Applications --- (2)

n “Baskets” = documents; “items” = words in 
those documents.
q Lets us find words that appear together unusually 

frequently, i.e., linked concepts.
n “Baskets” = sentences, “items” = documents 

containing those sentences.
q Items that appear together too often could 

represent plagiarism.
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Applications --- (3)

n “Baskets” = Web pages; “items” = linked 
pages.
q Pairs of pages with many common references 

may be about the same topic.
n “Baskets” = Web pages p ; “items” = pages 

that link to p .
q Pages with many of the same links may be 

mirrors or about the same topic.
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Important Point

n “Market Baskets” is an abstraction that 
models any many-many relationship between 
two concepts: “items” and “baskets.”
q Items need not be “contained” in baskets.

n The only difference is that we count co-
occurrences of items related to a basket, not 
vice-versa.
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Association Approaches

n Brute-force approach:
q List all possible association rules
q Compute the support and confidence for each rule
q Prune rules that fail the minsup and minconf

thresholds
Þ Computationally prohibitive!
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Association Approaches

n Two-step approach:
q Frequent Itemset Generation

n Generate all itemsets whose support ³ minsupport
q Rule Generation

n Generate high confidence rules from each frequent 
itemset, where each rule is a binary partitioning of a 
frequent itemset

n Frequent itemset generation is still 
computationally expensive
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Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there 
are 2d possible 
candidate itemsets
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Frequent Itemset Generation

n Brute-force approach: 
q Each itemset in the lattice is a candidate frequent itemset
q Count the support of each candidate by scanning the 

database or the files

q Match each transaction against every candidate

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions List of
Candidates

M

w
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Computation Model

n Typically, data is kept in a “flat file” rather than a 
database system.
q Stored on disk.
q Stored basket-by-basket.
q Expand baskets into pairs, triples, etc. as you read baskets.

n The true cost of using disk-resident data is usually 
the number of disk I/O’s.

n In practice, association-rule algorithms read the data 
in passes --- all baskets read in turn.

n Thus, we measure the cost by the number of passes 
an algorithm takes.
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Main-Memory Bottleneck

n For many frequent-itemset algorithms, main 
memory is the critical resource.
q As we read baskets, we need to count something, 

e.g., occurrences of pairs.
q The number of different things we can count is 

limited by main memory.
q Swapping counts in/out is a disaster.
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Naive Algorithm (of Counting Pairs)

n Read file once, counting in main memory the 
occurrences of each pair.
q Expand each basket of n items into its n (n -1)/2 

pairs.
n Fails if (#items)^2 exceeds main memory.

q Remember: #items can be 100K (Wal-Mart) or 
10B (Web pages).
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Details of Main-Memory Counting

n Two approaches:
1. Count all item pairs, using a triangular matrix.
2. Keep a table of triples [i, j, c] = the count of the 

pair of items {i,j } is c.
n 1 requires only (say) 4 bytes/pair.
n 2 requires 12 bytes, but only for those pairs 

with count > 0.
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Frequent Itemset Generation Strategies

n Complexity ~ O(NMw) => Expensive since M = 2d !!!
n Reduce the number of candidates (M)

q Complete search: M=2d

q Use pruning techniques to reduce M

n Reduce the number of transactions (N)
q Reduce size of N as the size of itemset increases
q Data sampling

n Reduce the number of comparisons (NM)
q Use efficient data structures to store the candidates or 

transactions
q No need to match every candidate against every 

transaction
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Reducing Number of Candidates

n A-Priori Algorithm
q If an itemset is frequent, then all of its subsets must also 

be frequent
n A-Priori principle holds due to the following property 

of the support measure:

q Support of an itemset never exceeds the support of its 
subsets

q This is known as the anti-monotone property of support

)()()(:, YsXsYXYX ³ÞÍ"
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Illustrating A-Priori Principle

Found to 
be 
Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned 
supersets
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A-Priori Algorithm

n A two-pass approach.
n Pass 1: Read baskets and count in main 

memory the occurrences of each item.
q Requires only memory proportional to #items.

n Pass 2: Read baskets again and count in 
main memory only those pairs both of which 
were found in Pass 1 to be frequent.
q Requires memory proportional to square of 

frequent items only.
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A-Priori Algorithm

n Method: 
q Let k=1
q Generate frequent itemsets of length 1
q Repeat until no new frequent itemsets are identified

n Generate length (k+1) candidate itemsets from length k 
frequent itemsets (Candidate generation step)

n Prune candidate itemsets containing subsets of length k that 
are infrequent  (Candidate pruning step)

n Count the support of each candidate by scanning the DB
n Eliminate candidates that are infrequent, leaving only those 

that are frequent
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A-Priori Algorithm

n Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=Æ; k++) do
begin

Ck+1 = candidates generated from Lk;
for each transaction t in database do

increment the count of all candidates in Ck+1
that are contained in t

Lk+1 = candidates in Ck+1 with more than min_support
end

return Èk Lk;



28

The bottleneck of A-Priori

n candidate generation and support counting
q Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets
q Use database scan and pattern matching to collect counts for the 

candidate itemsets
q Huge candidate sets:

n 104 frequent 1-itemset will generate 107 candidate 2-itemsets
n To discover a frequent pattern of size 100, e.g., {a1, a2, …, 

a100}, one needs to generate 2100 » 1030 candidates.
q Multiple scans of database: 

n Needs (n +1 ) scans, n is the length of the longest pattern
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Reducing Number of Comparisons
n Candidate counting:

q Scan the database of transactions to determine 
the support of each candidate itemset

q To reduce the number of comparisons, store the 
candidates in a hash structure
n Instead of matching each transaction against every 

candidate, match it against candidates contained in the 
hashed buckets

TID Items 
1 Bread, Milk 
2 Bread, Diaper, Beer, Eggs 
3 Milk, Diaper, Beer, Coke 
4 Bread, Milk, Diaper, Beer 
5 Bread, Milk, Diaper, Coke 

 

N

Transactions Hash Structure

k

Buckets
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Generate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose we have 15 candidate itemsets of length 3: 
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
Suppose we have one transaction of length 5 contains: {1, 2, 4, 6, 8}

You need:
• Hash function 

• Max leaf size: max number of itemsets stored in a leaf node (if number of 
candidate itemsets exceeds max leaf size, split the node)
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Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on 
1, 4 or 7
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Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on 
2, 5 or 8
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Association Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
Candidate Hash Tree

Hash on 
3, 6 or 9
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Subset Operation

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 
are the possible subsets of 
size 3?
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Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,7

2,5,8

3,6,9

Hash Functiontransaction
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Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction
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Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 
candidates
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Factors Affecting Complexity (I)

n Choice of minimum support threshold
q Lowering support threshold results in more 

frequent itemsets
q This may increase number of candidates and max 

length of frequent itemsets
n Dimensionality (number of items) of the data 

set
q More space is needed to store support count of 

each item
q If number of frequent items also increases, both 

computation and I/O costs may also increase
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Factors Affecting Complexity (II)

n Size of database
q Since A-priori makes multiple passes, run time of 

algorithm may increase with number of 
transactions

n Average transaction width
q Transaction width increases with denser data sets
q This may increase max length of frequent 

itemsets and traversals of hash tree (number of 
subsets in a transaction increases with its width)



40

Alternative: Tree Projection
Set enumeration tree: null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Possible Extension: 
E(A) = {B,C,D,E}

Possible Extension: 
E(ABC) = {D,E}
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Tree Projection

n Items are listed in lexicographic order
n Each node P stores the following information:

q Itemset for node P
q List of possible lexicographic extensions of P: 

E(P)
q Pointer to projected database of its ancestor node
q Bitvector containing information about which 

transactions in the projected database contain the 
itemset
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Projected Database

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {B,C}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

TID Items
1 {B}
2 {}
3 {C,D,E}
4 {D,E}
5 {B,C}
6 {B,C,D}
7 {}
8 {B,C}
9 {B,D}
10 {}

Original Database:
Projected Database 
for node A: 

For each transaction T, projected transaction at node A is T Ç E(A)
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ECLAT
n For each item, store a list of transaction ids (tids)

TID Items
1 A,B,E
2 B,C,D
3 C,E
4 A,C,D
5 A,B,C,D
6 A,E
7 A,B
8 A,B,C
9 A,C,D

10 B

Horizontal
Data Layout

A B C D E
1 1 2 2 1
4 2 3 4 3
5 5 4 5 6
6 7 8 9
7 8 9
8 10
9

Vertical Data Layout

TID-list
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ECLAT
n Determine support of any k-itemset by intersecting tid-

lists of two of its (k-1) subsets.

n Advantage: very fast support counting
n Disadvantage: intermediate tid-lists may become too 

large for memory

AB
1
5
7
8

B
1
2
5
7
8
10

A
1
4
5
6
7
8
9

Ù ®
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Alternative Method for Generating 
Frequent Itemset --- FP-Growth
n Compress a large database into a compact,  

Frequent-Pattern tree (FP-tree) structure
q highly condensed, but complete for frequent pattern finding
q avoid costly database scans

n Develop an efficient, FP-tree-based frequent pattern 
finding method
q A divide-and-conquer methodology
q Avoid candidate generation
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FP-tree construction

null

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 0.5

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

Steps:
1. Scan DB once, find frequent 

1-itemset (single item 
pattern)

2. Order frequent items in 
frequency descending order

3. Scan DB again, construct 
FP-tree
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Benefits of the FP-tree Structure

n Completeness: 
q never breaks a long pattern of any transaction
q preserves complete information for frequent pattern finding

n Compactness
q reduce irrelevant information—infrequent items are gone
q frequency descending ordering: more frequent items are 

more likely to be shared
q never be larger than the original database (if not count 

node-links and counts)



48

Finding Frequent Patterns Using FP-tree

n General idea (divide-and-conquer)
q Recursively grow frequent pattern path using the FP-tree

n Method 
q For each item, construct its conditional pattern-base, and 

then its conditional FP-tree
q Repeat the process on each newly created conditional FP-

tree 
q Until the resulting FP-tree is empty, or it contains only one 

path (single path will generate all the combinations of its sub-
paths, each of which is a frequent pattern)



49

Major Steps to Construct FP-tree

1) Construct conditional pattern base for each node 
in the FP-tree

2) Construct conditional FP-tree from each 
conditional pattern-base

3) Recursively construct conditional FP-trees and 
grow frequent patterns obtained so far

§ If the conditional FP-tree contains a single path, simply 
enumerate all the patterns
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Step 1: From FP-tree to Conditional 
Pattern Base
n Starting at the frequent header table in the FP-tree
n Traverse the FP-tree by following the link of each frequent item
n Accumulate all of transformed prefix paths of that item to form a 

conditional pattern base

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Properties of FP-tree for Conditional 
Pattern Base Construction

n Node-link property
q For any frequent item ai, all the possible frequent patterns 

that contain ai can be obtained by following ai's node-links, 
starting from ai's head in the FP-tree header

n Prefix path property
q To calculate the frequent patterns for a node ai in a path P, 

only the prefix sub-path of ai in P need to be accumulated, 
and its frequency count should carry the same count as 
node ai.
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Step 2: Construct Conditional FP-tree
n For each pattern-base

q Accumulate the count for each item in the base
q Construct the FP-tree for the frequent items of the 

pattern base

m-conditional 
pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent patterns 
concerning m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

Ú Ú

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3
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Finding Frequent Patterns by Creating 
Conditional Pattern-Bases

EmptyEmptyf

{(f:3)}|c{(f:3)}c

{(f:3, c:3)}|a{(fc:3)}a

Empty{(fca:1), (f:1), (c:1)}b

{(f:3, c:3, a:3)}|m{(fca:2), (fcab:1)}m

{(c:3)}|p{(fcam:2), (cb:1)}p
Conditional FP-treeConditional pattern-baseItem
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Step 3: Recursively Construct the 
conditional FP-tree

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3
am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3
cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3
cam-conditional FP-tree
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Single FP-tree Path Generation

n Suppose an FP-tree T has a single path P
n The complete set of frequent pattern of T can be 

generated by enumeration of all the combinations of 
the sub-paths of P

{}

f:3

c:3

a:3

m-conditional FP-tree

All frequent patterns 
concerning m
m, 
fm, cm, am, 
fcm, fam, cam, 
fcam

Ú
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Principles of Frequent Pattern Growth

n Pattern growth property
q Let a be a frequent itemset in DB, B be a's conditional 

pattern base, and b be an itemset in B.  Then a È b is a 
frequent itemset in DB iff b is frequent in B.  

n “abcdef ” is a frequent pattern, if and only if
q “abcde ” is a frequent pattern, and
q “f ” is frequent in the set of transactions containing “abcde”
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Why Is FP Growth Fast?

n Our performance study shows
q FP-growth is an order of magnitude faster than Apriori, 

and is also faster than tree-projection

n Reasoning
q No candidate generation, no candidate test

q Use compact data structure

q Eliminate repeated database scan

q Basic operation is counting and FP-tree building
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FP-growth vs. Apriori: Scalability With 
the Support Threshold
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FP-growth vs. Tree-Projection: Scalability 
with Support Threshold
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Rule Generation

n Given a frequent itemset L, find all non-empty 
subsets f Ì L such that f ® L – f satisfies the 
minimum confidence requirement
q If {A,B,C,D} is a frequent itemset, candidate rules:

ABC ®D, ABD ®C, ACD ®B, BCD ®A, 
A ®BCD, B ®ACD, C ®ABD, D ®ABC
AB ®CD, AC ® BD, AD ® BC, BC ®AD, 
BD ®AC, CD ®AB,

n If |L| = k, then there are 2k – 2 candidate 
association rules (ignoring L ® Æ and Æ ®
L)
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Rule Generation

n How to efficiently generate rules from 
frequent itemsets?
q In general, confidence does not have an anti-

monotone property
c(ABC ®D) can be larger or smaller than c(AB ®D)

q But confidence of rules generated from the same 
itemset has an anti-monotone property

q e.g., L = {A,B,C,D}: 
c(ABC ® D) ³ c(AB ® CD) ³ c(A ® BCD)

n Confidence is anti-monotone w.r.t. number of items on 
the RHS of the rule
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Rule Generation for A-Priori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules

Low 
Confidence 
Rule
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Rule Generation for A-Priori Algorithm

n Candidate rule is generated by merging two 
rules that share the same prefix
in the rule consequent

n join(CD=>AB,BD=>AC)
would produce the candidate
rule D => ABC

n Prune rule D=>ABC if its
subset AD=>BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC
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Presentation of Association Rules (Table Form )
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Visualization of Association Rule Using Plane Graph
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Visualization of Association Rule Using Rule Graph
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Effect of Support Distribution

n Many real data sets have skewed support 
distribution

Support 
distribution of 
a retail data set
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Effect of Support Distribution

n How to set the appropriate minsup threshold?
q If minsup is set too high, we could miss itemsets 

involving interesting rare items (e.g., expensive 
products)

q If minsup is set too low, it is computationally 
expensive and the number of itemsets is very 
large

n Using a single minimum support threshold 
may not be effective
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Multiple Minimum Support

n How to apply multiple minimum supports?
q MS(i): minimum support for item i 
q e.g.:     MS(Milk)=5%,   MS(Coke) = 3%,

MS(Broccoli)=0.1%, MS(Salmon)=0.5%
q MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))

= 0.1%
q Challenge: Support is no longer anti-monotone

n Suppose: Support(Milk, Coke) = 1.5% and
Support(Milk, Coke, Broccoli) = 0.5%

n {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is 
frequent
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Multiple Minimum Support

A

Item MS(I) Sup(I)

A 0.10% 0.25%

B 0.20% 0.26%

C 0.30% 0.29%

D 0.50% 0.05%

E 3% 4.20%
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Multiple Minimum Support

A
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Item MS(I) Sup(I)

A 0.10% 0.25%

B 0.20% 0.26%

C 0.30% 0.29%

D 0.50% 0.05%

E 3% 4.20%
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Multiple Minimum Support

n Order the items according to their minimum 
support (in ascending order)
q e.g.:     MS(Milk)=5%,   MS(Coke) = 3%,

MS(Broccoli)=0.1%,     MS(Salmon)=0.5%
q Ordering:  Broccoli, Salmon, Coke, Milk

n Need to modify A-Priori such that:
q L1 : set of frequent items
q F1 : set of items whose support is ³ MS(1)

where MS(1) is mini( MS(i) )
q C2 : candidate itemsets of size 2 is generated from F1

instead of L1
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Multiple Minimum Support
n Modifications to A-Priori:

q In traditional A-Priori,
n A candidate (k+1)-itemset is generated by merging two

frequent itemsets of size k
n The candidate is pruned if it contains any infrequent subsets

of size k
q Pruning step has to be modified:

n Prune only if subset contains the first item
n e.g.: Candidate={Broccoli, Coke, Milk} 

(ordered according to minimum support)
n {Broccoli, Coke} and {Broccoli, Milk} are frequent but 

{Coke, Milk} is infrequent
q Candidate is not pruned because {Coke,Milk} does not 

contain the first item, i.e., Broccoli.
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Pattern Evaluation

n Association rule algorithms tend to produce 
too many rules 
q many of them are uninteresting or redundant
q Redundant if {A,B,C} ® {D} and {A,B} ® {D}   

have same support & confidence
n Interestingness measures can be used to 

prune/rank the derived patterns
n In the original formulation of association 

rules, support & confidence are the only 
measures used
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Application of Interestingness Measure
Interestingness 

Measures
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Computing Interestingness Measure
n Given a rule X ® Y, information needed to compute rule 

interestingness can be obtained from a contingency table

Y Y 
X f11 f10 f1+

X f01 f00 fo+

f+1 f+0 |T|

Contingency table for X ® Y
f11: support of X and Y
f10: support of X and Y
f01: support of X and Y
f00: support of X and Y

Used to define various measures

! support, confidence, lift, Gini,
J-measure, etc.
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Drawback of Confidence

Coffee Coffee
Tea 15 5 20
Tea 75 5 80

90 10 100

Association Rule: Tea ® Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
Þ Although confidence is high, rule is misleading
Þ P(Coffee|Tea) = 0.9375
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Statistical Independence

n Population of 1000 students
q 600 students know how to swim (S)
q 700 students know how to bike (B)
q 420 students know how to swim and bike (S,B)

q P(SÙB) = 420/1000 = 0.42
q P(S) ´ P(B) = 0.6 ´ 0.7 = 0.42

q P(SÙB) = P(S) ´ P(B) => Statistical independence
q P(SÙB) > P(S) ´ P(B) => Positively correlated
q P(SÙB) < P(S) ´ P(B) => Negatively correlated
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Statistical-based Measures

n Measures that take into account statistical 
dependence

)](1)[()](1)[(
)()(),(

)()(),(
)()(
),(

)(
)|(

YPYPXPXP
YPXPYXPtcoefficien

YPXPYXPPS
YPXP
YXPInterest

YP
XYPLift

--
-

=-

-=

=

=

f



80

Example: Lift/Interest

Coffee Coffee
Tea 15 5 20
Tea 75 5 80

90 10 100

Association Rule: Tea ® Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
Þ Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)
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Drawback of Lift & Interest

Y Y
X 10 0 10
X 0 90 90

10 90 100

Y Y
X 90 0 90
X 0 10 10

90 10 100

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

Statistical independence:

If P(X,Y)=P(X)P(Y)  => Lift = 1
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Properties of A Good Measure

n There are lots of measures proposed in the 
literature

n Piatetsky-Shapiro: 
3 properties a good measure M must satisfy:
q M(A,B) = 0 if A and B are statistically independent
q M(A,B) increase monotonically with P(A,B) when 

P(A) and P(B) remain unchanged
q M(A,B) decreases monotonically with P(A) [or 

P(B)] when P(A,B) and P(B) [or P(A)] remain 
unchanged
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Subjective Interestingness Measure

n Objective measure: 
q Rank patterns based on statistics computed from data
q e.g., 21 measures of association (support, confidence, 

Laplace, Gini, mutual information, Jaccard, etc).

n Subjective measure:
q Rank patterns according to user’s interpretation

n A pattern is subjectively interesting if it contradicts the 
expectation of a user

n A pattern is subjectively interesting if it is actionable
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Interestingness via Unexpectedness
n Need to model expectation of users (domain 

knowledge)

n Need to combine expectation of users with evidence 
from data (i.e., extracted patterns)

+ Pattern expected to be frequent

- Pattern expected to be infrequent

Pattern found to be frequent

Pattern found to be infrequent

+
-

Expected Patterns-
+ Unexpected Patterns


