

Artificial Intelligence and Machine Learning

Model Evaluation

Fundamentals

- The most important part of the design of an evaluation experiment for a predictive model is to ensure that the data used to evaluate the model is not the same as the data used to train the model.
- The purpose of the evaluation:
 - To determine which model is the most suitable for the task
 - To estimate how the model will perform
 - To convince users that the model will meet their needs

Standard Approach

- Measuring misclassification rate on a hold-out test set.
- For binary prediction problems, there are 4 possible outcomes:
 - True positive (TP)
 - True negative (TN)
 - False positive (FP)
 - False negative (FN)
- Misclassification accuracy
$$= (FP + FN)/(TP + TN + FP + FN)$$

Evaluating the Regression Model

- Residual (Error)

$$e_i = y_i - \hat{y}_i$$

where y_i is the prediction result, and \hat{y}_i is the observed result.

- Residual plots: non-random pattern may indicate that there is some left over correlation.
- Standard error

$$s_e = \sqrt{\frac{1}{N-2} \sum_{i=1}^N e_i^2}$$

- The standard error is related to the size of the average error that the model produces. We can compare this error to the sample mean of y or with the standard deviation of y to gain some perspective on the accuracy of the model.

Designing Evaluation Experiments

■ Hold-out Sampling

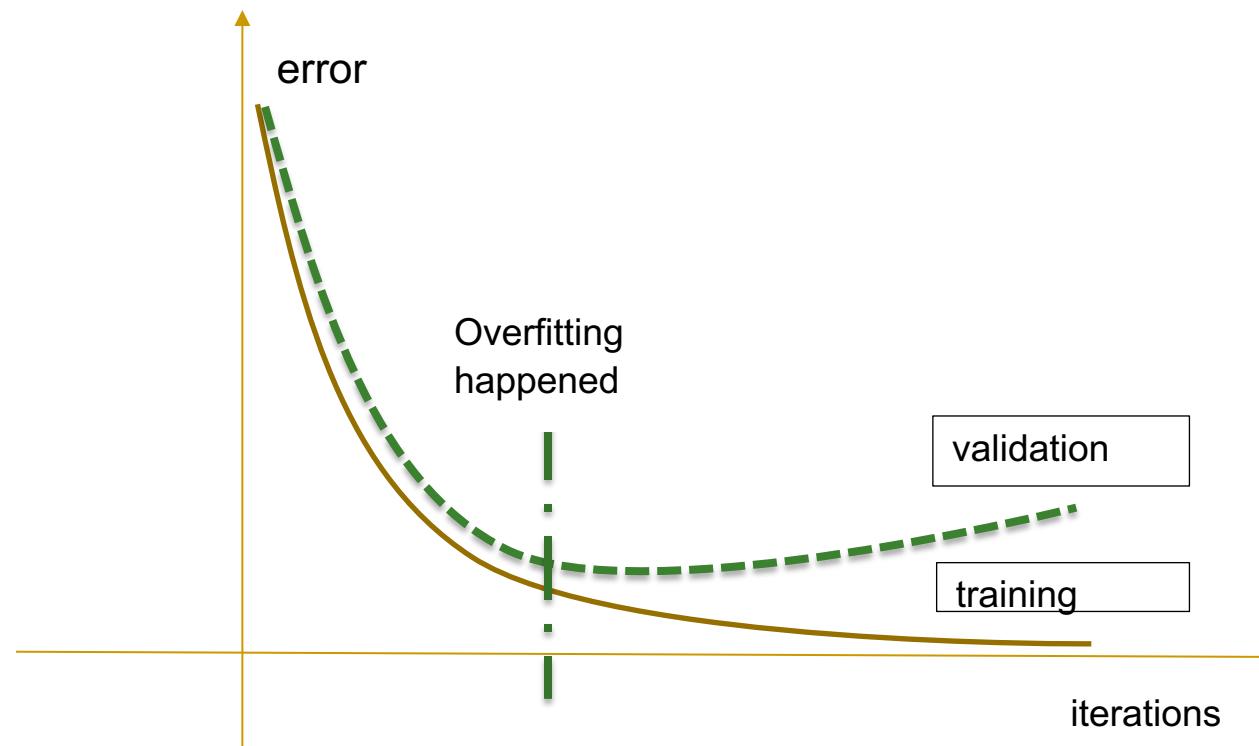
- Divide the full data set into training, validation, and test sets
- Validation set can be used to avoid overfitting in iterative machine learning algorithms

■ K-Fold cross validation

- Divide the full data set into k sub sets
- Train K models for evaluation purposes, each one use one of the subsets as test set and the remaining as training set
- Extreme case: Leave-one-out Cross Validation

■ Out-of-time Sampling

Using Validation Dataset to Avoid Overfitting Problem



Performance Measures – Categorical Targets

- Confusion matrix

		Prediction	
		TRUE	FALSE
Target	TRUE	TP	FN
	FALSE	FP	TN

- Rates:

$$TPR = \frac{TP}{(TP + FN)}, TNR = \frac{TN}{(TN + FP)}$$
$$FPR = \frac{FP}{(TN + FP)}, FNR = \frac{FN}{(TP + FN)}$$

- Precision = $\frac{TP}{(TP + FP)}$ (percent of found positives are actually positives)
- Recall = $\frac{TP}{(TP + FN)}$ (percent of true positives are found to be positive)
- Average Class Accuracy = $\frac{1}{|levels(t)|} \sum_{i \in levels(t)} Recall_i$
- F1 measure = $2 \times \frac{(precision \times recall)}{(precision + recall)}$

Performance Measures

- It is not always correct to treat all outcomes equal, sometimes it is useful to take into account the cost of the different outcomes when evaluating models.
- Profit Matrix

		Prediction	
		TRUE	FALSE
Target	TRUE	TP_profit	FN_profit
	FALSE	FP_profit	TN_profit

- $$\begin{aligned} \text{Profit} = & TP \times TP_{profit} + FN \times FN_{profit} \\ & + FP \times FP_{profit} + TN \times TN_{profit} \end{aligned}$$

Performance Measures – Prediction Scores

- Make the classification prediction model return a score between 0 and 1, then threshold the score
 - output(score, threshold)
$$= \begin{cases} \text{positive, if } score \geq threshold \\ \text{negative, otherwise} \end{cases}$$
- The basis of most of performance measurements is to measure how well the distributions of scores produced by the model for different target levels are separated.

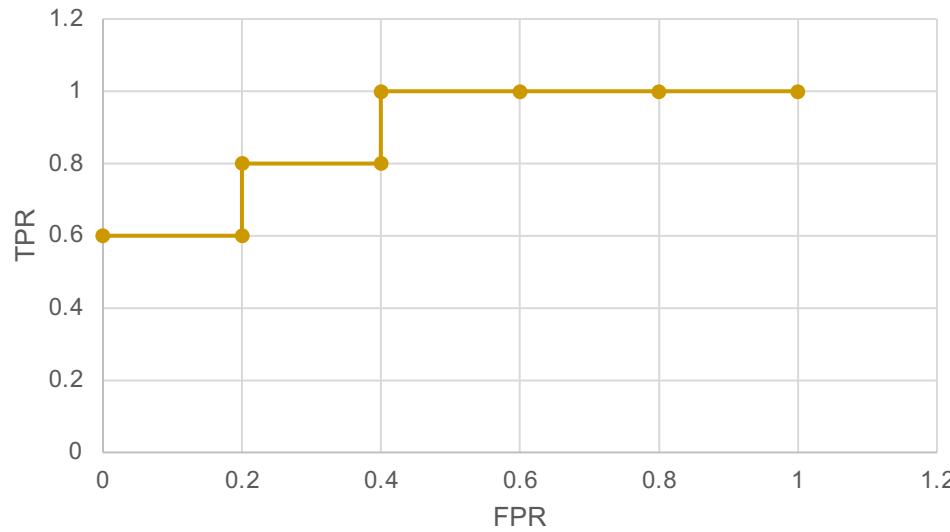
Receiver Operating Characteristic Curve

- TPR and TNR are intrinsically tied to the threshold used to convert prediction scores into target levels.
- This threshold can be changed, however, which leads to different predictions and a different confusion matrix.
- As threshold decreases, TPR increases and FPR also increases.
- Capturing this tradeoff (between a hit rate and a false alarm rate) is the basis of the ROC curve.

ROC Example

ID	target	score
1	TRUE	0.9
2	TRUE	0.85
3	TRUE	0.8
4	FALSE	0.7
5	TRUE	0.65
6	FALSE	0.6
7	TRUE	0.5
8	FALSE	0.4
9	FALSE	0.35
10	FALSE	0.3

cut-off score	FPR	TPR
0.75	0	0.6
0.68	0.2	0.6
0.63	0.2	0.8
0.55	0.4	0.8
0.45	0.4	1
0.38	0.6	1
0.32	0.8	1
0.25	1	1



ROC Index

- The receiver operating characteristic index is based on the receiver operating characteristic curve.
- The ROC index measures the area underneath an ROC curve.
- The ROC index of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance. (Signal Detection Theory)
- ROC index can be used to compare classifiers: the bigger the ROC index the better. (see next slide)
- **ROC index =**
$$\sum_2^{|T|} \frac{(FPR(T[i]) - FPR(T[i-1])) \times (TPR(T[i]) + TPR(T[i-1]))}{2}$$

Evaluating Model using ROC Index

- We can use the traditional academic point system to evaluate a model using ROC index.
 - 0.90 – 1.00 → excellent (A)
 - 0.80 – 0.90 → good (B)
 - 0.70 – 0.80 → fair (C)
 - 0.60 – 0.70 → poor (D)
 - 0.50 – 0.60 → fail (F)
 - < 0.50 → worse than a random model

Performance Measures – Multinomial Targets

- Confusion Matrix for a multinomial prediction problem with K target levels:

		Prediction			Recall
		Level_1	...	Level_K	
Target	Level_1				
	...				
	Level_K				
Precision					

- $\text{Precision}(i) = \frac{TP(i)}{TP(i)+FP(i)}$
- $\text{Recall}(i) = \frac{TP(i)}{TP(i)+FN(i)}$

Performance Measure – Continuous Targets

- Sum of squared errors

$$\frac{1}{2} \sum_{i=1}^N (t_i - \mathbf{M}(d_i))^2$$

- Mean squared error

$$\frac{\sum_{i=1}^N (t_i - \mathbf{M}(d_i))^2}{n}$$

- Root mean squared error

$$\sqrt{\frac{\sum_{i=1}^N (t_i - \mathbf{M}(d_i))^2}{n}}$$

- Mean absolute error

$$\frac{\sum_{i=1}^N \text{abs}(t_i - \mathbf{M}(d_i))}{n}$$

- Domain independent measures of error

$$R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$$

$$\text{total sum of squares} = \frac{1}{2} \sum_{i=1}^N (t_i - \bar{t})^2$$

Model Evaluation After Deployment

- Purpose: to capture a signal that indicates model decay has occurred
- Signal source:
 - The performance of the model measured using appropriate performance measures
 - Data may not be available
 - The distribution of the outputs of a model
 - Stability Index
 - The distributions of the descriptive features in query instances presented to the model
 - May have too many data

Stability Index

stability index =

$$\sum_{k \in levels(t)} \left(\left(\frac{|A_{t=k}|}{|A|} - \frac{|B_{t=k}|}{|B|} \right) \times \log_e \left(\frac{|A_{t=k}|}{|A|} / \frac{|B_{t=k}|}{|B|} \right) \right)$$

- In general,
 - Stability index < 0.1 , OK.
 - Stability index is between 0.1 and 0.25, monitor.
 - Stability index > 0.25 , significant concept drift has occurred, and corrective action is required.