Artificial Intelligence
and Machine Learning

Error Based Learning



Big Idea

A parameterized prediction model is
initialized with a set of random parameters
and an error function is used to judge how
well this initial model performs when making
predictions for instances in a training dataset.

Based on the value of the error function, the
parameters are iteratively adjusted to create
a more and more accurate model.



Simple Linear Regression

When there appears to have a linear

relationship between a descriptive feature
and target feature

The equation of a line can be written as:
y=mx-+b>b

Find the best <m, b> to minimize the error.
Measuring Err07r1:

Error = z(yi — (mxx; + b))?
i=1



Multivariable Linear Regression

Model equation:
M
y = w|[0] + 2 wli]xx[i]
i=1

Error measurement equation:

N M
Error = Z(yi — (W[O] + Z W[i]Xx[i]))z
i=1 1=1



Minimize the Error

To find the best weight W that minimizes
error, the equations are:

W] Error =0,fori=0tok

Several ways to find the solution
o Solve the equations

0 Guided search approach known as gradient
descent algorithm



 Gradient Descent Algorithm

Require: set of training instances D

Require: alearning rate a that controls how quickly
the algorithm converges

Require: a function, errorDelta, that determines the
direction in which to adjust a given weight,
w[j], so as to move down the slope of an
emor surfac e determined by the dataset, D

Require: a convergence criterion that indicates that
the algorithm has completed

1. w = random starting point in the weight space

2. repeat

3. foreach w[j] inw do

4 wlj] = w[j] + a x errorDelta(D, w[j])

5. endfor

6. until convergence occurs




Error Delta

Each weight is considered independent and for
each one a small adjustment is made by adding
a small delta value to the current weight, wlj].

This adjustment should ensure that the change
In the weight leads to a move downwards on the
error surface.

Equation:
errorDelta(D wlj])

Z((yl Z(w I ) xx: 1)



Leaming Rate

The learning rate, a, determines the size of the
adjustment made to each weight at each step in
the process.

Unfortunately, choosing learning rates is not a
well defined science.

Most practitioners use rules of thumb and trial
and error to determine the learning rate.

A typical range for learning rates is [0.00001,
10].

Based on empirical evidence, choosing random
initial weights uniformly from the range [-0.2, 0.2]
tends to work well.



Interpreting Multivariable Linear
Regression Models

The weights used by linear regression models indicate the
effect of each descriptive feature on the predictions
returned by the model.

Both the sign and the magnitude of the weight provide
information on how the descriptive feature affects the
predictions of the model.

It is tempting to infer the relative importance of the different
descriptive features in the model from the magnitude of the
weights.

However, direct comparison of the weights tells us little
about their relative importance.

A better way to determine the importance of each
descriptive feature in the model is to perform a statistical
significance test.



T-test

T-test is a statistical significance test that can be used to analyze the
importance of a descriptive feature x[j] in a linear regression model.

The standard error for the overall model is calculated as

IiV=1(3’i — W - x;)?
n—2

%0\ standard error calculation is then done for a descriptive feature as
ollows:

Se =

Se

se(x[j]) = —
(ELA Gl - X2
The t-statistic for this test is calculated as:
. _ Wl
se(x[jD
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T-test (I1)

Using a standard t-statistic look-up table,
determine the p-value associated with this
test (this is a two tailed t-test with degrees of
freedom set to the number of instances in the
training set minus 2).

If the p-value is less than the required
significance level, typically 0.05, then the
descriptive feature has a significant impact on
the model; otherwise it does not.
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Learning Rate Decay

Learning rate decay allows the learning rate
to start at a large value and then decay over
time according to a predefined schedule.

A good approach is to use the following

decay schedule:
C

a :ao
t c+ 1T
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Handling Categorical Descriptive Features

The basic structure of the multivariable linear
regression model allows for only continuous
descriptive features.

The most common approach of handling
categorical features uses a transformation
that converts a single categorical descriptive
feature into number of continuous descriptive
feature values that can encode the levels of
the categorical feature.
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Handling Categorical Target Features

Find a linear separator as the decision boundary.

All the data points above the decision boundary will
result in a negative value when plugged into the
decision boundary equation, while all data points
below the decision boundary will result in a positive

value.
Model equation: y
y = { 1if ZW[i]Xx[i] >0
i=0
0 otherwise

The surface de%ined by this rule is known as a
decision surface.
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Issues

The hard decision boundary given in the
previous slide is discontinuous, so is not
differentiable and we can’t calculate the gradient
of the error surface.

Furthermore, the model always makes
completely confident predictions of O or 1,
whereas a little more subtlety is desirable.

Solution: use a more sophisticated threshold
function that is continuous, and therefore
differentiable, and that allows for the subtlety
desired --- the logistic function
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Logistic Function

Equation:

Logistic(z) = =

where z is a numeric value and e is the
Euler's number, 2.718281828...

Before training a logistic regression model,
the binary target feature is mapped to O or 1.

Logistic regression m%del equation:

y = Logistic(z wli]xx[i])
i=0
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Training Logistic Model

To repurpose the gradient descent algorithm for
training logistic regression models, the only change
that needs to be made is in the weight update rule.

The new error delta rule is:
errﬁrDelta(D, wljD

= 2((yi — My (X)) XM,y (X)X (1 — My, (X)) XX; [1])

=1
where M,, (X;) = S3o(wlk]xX;[k])
For logistic regression models, it is recommended

that descriptive feature values always be normalized
to the range [-1, 1].
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Modelling Non-linear Relationships

In order to handle non-linear relationships, we
transform the data rather than the model using a

set of basis functions.

The advantage of this is that, except for
iIntroducing the mechanism of basis functions,
we do not need to make any other changes to
the approach we have presented so far.

For example, for each attribute A, we introduce a
set of basis functions as:

Po(4) =1

p1(A) = Az

p,(A) =A
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Basis Functions

Typically, the number of basis functions in @
IS larger than the number of descriptive
features, so the application of the basis
functions moves the data into a higher
dimensional space.

The expectation is that a linear separating
hyperplane will exist in this higher
dimensional space even though it does not Iin
the original feature space.
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Multinomial Logistic Regression

For r target feature levels, we can build r
separate logistic regression models, where
each model is a one-versus-all logistic
regression model.

Then the outputs from the r models are
combined.

The r one-versus-all models can be trained in
parallel.
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Support Vector Machines

Goal of training a support vector machine
(SVM): find the decision boundary, or separating
hyperplane, that leads to the maximum margin.

The instances in a training dataset that fall along
the margin extents, and so define the margins,
are known as the support vectors and define the
decision boundary.

Training a support vector machine is framed as
a constrained quadratic optimization problem.

This type of problem is defined in terms of
o A set of constraints
o An optimization criterion
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SVM

The constraints required by the training process is:
in(WO +w- Xl) =1
The optimization criterion used is defined in terms of the
perpendicular distance from any instance to the decision boundary
and is given by
abs(wyg +w - X;)

diSt(Xi) — ”W”

where ||w|| = \/Zl . w;?, and is known as the Euclidean norm of w.

For instances along the margin extents, abs(wy + w - X;) = 1.
So the distance from any instance along the margin extents to the

decision boundary is — Tl and because the margin is symmetrical to

either side of the decision boundary, the size of the margin is ”‘i“

22



Training SVM

The goal when training a support vector
machine is:
o Minimize ||w|]
0 Subject to the constraint

yiX(Wg+w-X;) =1 foralli
Basis functions can be used with support
vector machines to handle data that is not
linearly separable.

The constraint becomes:
yiX(wog+w-@(X;)) =1 foralli
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Kernel Trick

The dot product with basis functions is a
computationally very expensive operation.

To avoid it, kernel trick is usually used.

Applying a much less costly kernel function to
the original descriptive feature values.

w:-@(X;) = kernel(w, X;)
Some popular options for kernel functions:
o Linear kernel -- kernel(w, X;) =w - X; + ¢
o Polynomial kernel -- kernel(w, X;) = (w - X; + 1)?

o Gaussian radial basis kernel --
kernel(w, X;) = exp(—yllw — X;||%)
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