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Big Idea

n A parameterized prediction model is 
initialized with a set of random parameters 
and an error function is used to judge how 
well this initial model performs when making 
predictions for instances in a training dataset.

n Based on the value of the error function, the 
parameters are iteratively adjusted to create 
a more and more accurate model.
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Simple Linear Regression

n When there appears to have a linear 
relationship between a descriptive feature 
and target feature

n The equation of a line can be written as:
𝑦 = 𝑚𝑥 + 𝑏

n Find the best <m, b> to minimize the error.
n Measuring Error:

𝐸𝑟𝑟𝑜𝑟 = *
!"#

$

(𝑦! − 𝑚×𝑥! + 𝑏 )%
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Multivariable Linear Regression

n Model equation:

𝑦 = 𝑤 0 + *
!"#

&

𝑤[𝑖]×𝑥[𝑖]

n Error measurement equation:

𝐸𝑟𝑟𝑜𝑟 = *
!"#

'

(𝑦! − 𝑤 0 +*
!"#

&

𝑤[𝑖]×𝑥[𝑖] )%
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Minimize the Error

n To find the best weight W that minimizes 
error, the equations are:

𝜕
𝜕𝑤[𝑖] 𝐸𝑟𝑟𝑜𝑟 = 0, 𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝑘

n Several ways to find the solution
q Solve the equations
q Guided search approach known as gradient 

descent algorithm

5



Gradient Descent Algorithm
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Error Delta

n Each weight is considered independent and for 
each one a small adjustment is made by adding 
a small delta value to the current weight, w[j].

n This adjustment should ensure that the change 
in the weight leads to a move downwards on the 
error surface.

n Equation:
𝑒𝑟𝑟𝑜𝑟𝐷𝑒𝑙𝑡𝑎 𝐷,𝑤 𝑗

= ,
!"#

$

((𝑦! −,
%"&

'

(𝑤 𝑘 ×𝑥! 𝑘 ))×𝑥![𝑗])
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Learning Rate

n The learning rate, α, determines the size of the 
adjustment made to each weight at each step in 
the process.

n Unfortunately, choosing learning rates is not a 
well defined science.

n Most practitioners use rules of thumb and trial 
and error to determine the learning rate.

n A typical range for learning rates is [0.00001, 
10].

n Based on empirical evidence, choosing random 
initial weights uniformly from the range [-0.2, 0.2] 
tends to work well.
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Interpreting Multivariable Linear 
Regression Models
n The weights used by linear regression models indicate the 

effect of each descriptive feature on the predictions 
returned by the model.

n Both the sign and the magnitude of the weight provide 
information on how the descriptive feature affects the 
predictions of the model.

n It is tempting to infer the relative importance of the different 
descriptive features in the model from the magnitude of the 
weights.

n However, direct comparison of the weights tells us little 
about their relative importance.

n A better way to determine the importance of each 
descriptive feature in the model is to perform a statistical 
significance test.
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T-test

n T-test is a statistical significance test that can be used to analyze the 
importance of a descriptive feature x[j] in a linear regression model.

n The standard error for the overall model is calculated as

𝑠𝑒 =
∑!"#$ (𝑦! −𝑊 ) 𝑥!)%

𝑛 − 2
n A standard error calculation is then done for a descriptive feature as 

follows:

𝑠𝑒 𝑥 𝑗 =
𝑠𝑒

∑!"#$ (𝑥! 𝑗 − 𝑥[𝑗])%

n The t-statistic for this test is calculated as:

𝑡 =
𝑤[𝑗]

𝑠𝑒(𝑥 𝑗 )
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T-test (II)

n Using a standard t-statistic look-up table, 
determine the p-value associated with this 
test (this is a two tailed t-test with degrees of 
freedom set to the number of instances in the 
training set minus 2).

n If the p-value is less than the required 
significance level, typically 0.05, then the 
descriptive feature has a significant impact on 
the model; otherwise it does not.
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Learning Rate Decay

n Learning rate decay allows the learning rate 
to start at a large value and then decay over 
time according to a predefined schedule.

n A good approach is to use the following 
decay schedule:

𝛼( = 𝛼)
𝑐

𝑐 + 𝜏
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Handling Categorical Descriptive Features

n The basic structure of the multivariable linear 
regression model allows for only continuous 
descriptive features.

n The most common approach of handling 
categorical features uses a transformation 
that converts a single categorical descriptive 
feature into number of continuous descriptive 
feature values that can encode the levels of 
the categorical feature.
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Handling Categorical Target Features

n Find a linear separator as the decision boundary.
n All the data points above the decision boundary will 

result in a negative value when plugged into the 
decision boundary equation, while all data points 
below the decision boundary will result in a positive 
value.

n Model equation:

𝑦 = 1 𝑖𝑓 &
345

6

𝑤 𝑖 ×𝑥 𝑖 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
n The surface defined by this rule is known as a 

decision surface.
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Issues

n The hard decision boundary given in the 
previous slide is discontinuous, so is not 
differentiable and we can’t calculate the gradient 
of the error surface.

n Furthermore, the model always makes 
completely confident predictions of 0 or 1, 
whereas a little more subtlety is desirable.

n Solution: use a more sophisticated threshold 
function that is continuous, and therefore 
differentiable, and that allows for the subtlety 
desired --- the logistic function
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Logistic Function

n Equation:
Logistic(z) = #

#*+!"
where z is a numeric value and e is the 
Euler’s number, 2.718281828…

n Before training a logistic regression model, 
the binary target feature is mapped to 0 or 1.

n Logistic regression model equation:

𝑦 = 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(*
!")

&

𝑤 𝑖 ×𝑥 𝑖 )
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Training Logistic Model

n To repurpose the gradient descent algorithm for 
training logistic regression models, the only change 
that needs to be made is in the weight update rule.

n The new error delta rule is:
𝑒𝑟𝑟𝑜𝑟𝐷𝑒𝑙𝑡𝑎 𝐷,𝑤 𝑗

=,
#$%

&

( 𝑦# −𝑀' 𝑋# ×𝑀' 𝑋# × 1 −𝑀' 𝑋# ×𝑋# 𝑗 )

where 𝑀7 𝑋3 = ∑8456 (𝑤 𝑘 ×𝑋3 𝑘 )
n For logistic regression models, it is recommended 

that descriptive feature values always be normalized 
to the range [-1, 1].
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Modelling Non-linear Relationships

n In order to handle non-linear relationships, we 
transform the data rather than the model using a 
set of basis functions.

n The advantage of this is that, except for 
introducing the mechanism of basis functions, 
we do not need to make any other changes to 
the approach we have presented so far.

n For example, for each attribute A, we introduce a 
set of basis functions as:

𝜑& 𝐴 = 1
𝜑# 𝐴 = 𝐴
𝜑( 𝐴 = 𝐴(
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Basis Functions

n Typically, the number of basis functions in ø 
is larger than the number of descriptive 
features, so the application of the basis 
functions moves the data into a higher 
dimensional space.

n The expectation is that a linear separating 
hyperplane will exist in this higher 
dimensional space even though it does not in 
the original feature space.
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Multinomial Logistic Regression

n For r target feature levels, we can build r 
separate logistic regression models, where 
each model is a one-versus-all logistic 
regression model.

n Then the outputs from the r models are 
combined.

n The r one-versus-all models can be trained in 
parallel.
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Support Vector Machines

n Goal of training a support vector machine 
(SVM): find the decision boundary, or separating 
hyperplane, that leads to the maximum margin.

n The instances in a training dataset that fall along 
the margin extents, and so define the margins, 
are known as the support vectors and define the 
decision boundary.

n Training a support vector machine is framed as 
a constrained quadratic optimization problem.

n This type of problem is defined in terms of
q A set of constraints
q An optimization criterion
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SVM

n The constraints required by the training process is:
𝑦!× 𝑤" +𝒘 . 𝑋! ≥ 1

n The optimization criterion used is defined in terms of the 
perpendicular distance from any instance to the decision boundary 
and is given by

𝑑𝑖𝑠𝑡 𝑋! =
𝑎𝑏𝑠(𝑤" +𝒘 . 𝑋!)

𝒘

where 𝒘 = ∑!#$% 𝒘!
& , and is known as the Euclidean norm of w.

n For instances along the margin extents, 𝑎𝑏𝑠(𝑤" +𝒘 . 𝑋!) = 1.
n So the distance from any instance along the margin extents to the 

decision boundary is $
𝒘

, and because the margin is symmetrical to 

either side of the decision boundary, the size of the margin is &
𝒘

.
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Training SVM

n The goal when training a support vector 
machine is:
q Minimize 𝒘
q Subject to the constraint 

𝑦!× 𝑤& +𝒘 ; 𝑋! ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖
n Basis functions can be used with support 

vector machines to handle data that is not 
linearly separable.

n The constraint becomes:
𝑦!× 𝑤& +𝒘 ; 𝜑(𝑋!) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖
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Kernel Trick

n The dot product with basis functions is a 
computationally very expensive operation.

n To avoid it, kernel trick is usually used.
n Applying a much less  costly kernel function to 

the original descriptive feature values.
𝒘 @ 𝜑(𝑋!) ≈ 𝑘𝑒𝑟𝑛𝑒𝑙(𝒘, 𝑋!)

n Some popular options for kernel functions:
q Linear kernel -- 𝑘𝑒𝑟𝑛𝑒𝑙 𝒘, 𝑋! =𝒘 9 𝑋3 + 𝑐
q Polynomial kernel -- 𝑘𝑒𝑟𝑛𝑒𝑙 𝒘, 𝑋3 = (𝒘 9 𝑋3 + 1)9
q Gaussian radial basis kernel --

𝑘𝑒𝑟𝑛𝑒𝑙 𝒘, 𝑋! = exp(−𝛾 𝒘 − 𝑋! ")
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