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Big Idea

n We can use estimates of likelihoods to 
determine the most likely prediction that 
should be made.

n More importantly, we revise these predictions 
based on data we collect and whenever extra 
evidence becomes available.
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Classification Problem Example
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ID HEADACHE FEVER VOMITING MENINGITIS
1 TRUE TRUE FALSE FALSE
2 FALSE TRUE FALSE FALSE
3 TRUE FALSE TRUE FALSE
4 TRUE FALSE TRUE FALSE
5 FALSE TRUE FALSE TRUE
6 TRUE FALSE TRUE FALSE
7 TRUE FALSE TRUE FALSE
8 TRUE FALSE TRUE TRUE
9 FALSE TRUE FALSE FALSE
10 TRUE FALSE TRUE TRUE

HEADACHE FEVER VOMITING MENINGITIS
TRUE FALSE TRUE ?



Probability

n Basic element: random variable/feature
n Domain values for a feature must be

q Exhaustive
q Mutually exclusive

n Elementary propositions are constructed by the 
assignment of a value to a random feature.

n Prior or unconditional probability associated with 
a proposition is the degree of belief accorded to 
it in the absence of any other information.
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Probability (II)

n A probability function, P(x=v), returns the probability of a feature, 
x, taking a specific value, v.

n A joint probability refers to the probability of an assignment of 
specific values to multiple different features.

n A conditional probability refers to the probability of one feature 
taking a specific value given that we already know the value of a 
different feature.

n A probability distribution is a data structure that describes the 
probability of each possible value a feature can take. The sum of 
a probability distribution must equal to 1.

n A joint probability distribution is a probability distribution over 
more than one feature assignment and is written as a multi-
dimensional matrix in which each cell lists the probability of a 
particular combination of feature values being assigned.
The sum of all the cells in a joint probability distribution must 
equal to 1.
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Fundamentals

n Bayes’ Theorem

𝑃 𝑋 𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)
n Example:

A patient has tested positive for a serious 
disease. The test is 99% accurate. However, the 
disease is extremely rare, striking only 1 in 
10,000 people. What is the actual probability that 
the patient has the disease?
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Application of Bayes’ Theorem

𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑒𝑠𝑡 + =
𝑃 𝑡𝑒𝑠𝑡 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒)

𝑃(𝑡𝑒𝑠𝑡+)
𝑃 𝑡𝑒𝑠𝑡 + = 𝑃 𝑡𝑒𝑠𝑡 + 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒

+ 𝑃 𝑡𝑒𝑠𝑡 + ¬𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑃(¬𝑑𝑖𝑠𝑒𝑎𝑠𝑒)
= 0.99 * 0.0001 + 0.01 * 0.9999
= 0.0101

𝑃 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑡𝑒𝑠𝑡 + =
0.99 ∗ 0.0001

0.0101
= 0.0098
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Generalized Bayes’ Theorem

𝑃 𝑡 = 𝑙 𝑞 1 , … , 𝑞 𝑚

=
𝑃 𝑞 1 ,… , 𝑞 𝑚 𝑡 = 𝑙)𝑃(𝑡 = 𝑙)

𝑃(𝑞 1 , … , 𝑞 𝑚 )
n Chain Rule (apply to a conditional 

probability):
𝑃 𝑞 1 ,… , 𝑞 𝑚 𝑡 = 𝑙
= 𝑃 𝑞 1 𝑡 = 𝑙 ×𝑃 𝑞 2 𝑞 1 , 𝑡 = 𝑙 ×⋯
×𝑃(𝑞[𝑚]|𝑞 𝑚 − 1 ,… , 𝑞 1 , 𝑡 = 𝑙)
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Bayesian MAP (maximum posteriori) 
Prediction Model
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Advantages of Bayesian Model

n Probabilistic learning:  Calculate explicit probabilities for 
hypothesis, among the most practical approaches to 
certain types of learning problems

n Incremental: Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct.  Prior knowledge can be combined with 
observed data.

n Probabilistic prediction:  Predict multiple hypotheses, 
weighted by their probabilities

n Standard: Even when Bayesian methods are 
computationally intractable, they can provide a standard 
of optimal decision making against which other methods 
can be measured
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Disadvantages

n Practical difficulty: require initial knowledge of 
many probabilities, significant computational cost

n Curse of Dimensionality: As the number of 
descriptive features grows, the number of potential 
conditioning events grows. Consequently, an 
exponential increase is required in the size of the 
dataset as each new descriptive feature is added to 
ensure that for any conditional probability, there are 
enough instances in the training dataset matching 
the conditions so that the resulting probability is 
reasonable.

n If dataset is not large enough, model is over-fitting to 
the training data.
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Independent Events

n If knowledge of one event has no effect on the 
probability of another event, and vice versa, then 
the two events are independent of each other.

n If two events X and Y are independent then:
P(X|Y) = P(X)
P(X, Y) = P(X) ×P(Y)

n Full independence between events is quite rare.
n Two, or more, events are independent when a 

third event has happened, then these events are 
conditionally independent.
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Naïve Bayes’ Classifier

n Naïve Bayes’ Classifier assumes that the 
attributes are conditionally independent:

𝑃 𝑞 1 ,… , 𝑞 𝑚 𝑡 = 𝑙 = 3
!"#

$

𝑃(𝑞[𝑖]|𝑡 = 𝑙)

n Naïve Bayes’ Classifier:

𝐻!"#(𝑞) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑙 ∈ 𝑙𝑒𝑣𝑒𝑙𝑠(𝑡)
(1
$%&

'

𝑃(𝑞[𝑖]|𝑡 = 𝑙))×𝑃(𝑡 = 𝑙)
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Play-tennis example: estimating P(xi|C)

Outlook Temperature Humidity Windy Class
sunny hot high false N
sunny hot high true N
overcast hot high false P
rain mild high false P
rain cool normal false P
rain cool normal true N
overcast cool normal true P
sunny mild high false N
sunny cool normal false P
rain mild normal false P
sunny mild normal true P
overcast mild high true P
overcast hot normal false P
rain mild high true N

outlook
P(sunny|p) = 2/9 P(sunny|n) = 3/5
P(overcast|p) = 4/9 P(overcast|n) = 0
P(rain|p) = 3/9 P(rain|n) = 2/5
temperature
P(hot|p) = 2/9 P(hot|n) = 2/5
P(mild|p) = 4/9 P(mild|n) = 2/5
P(cool|p) = 3/9 P(cool|n) = 1/5
humidity
P(high|p) = 3/9 P(high|n) = 4/5
P(normal|p) = 6/9 P(normal|n) = 2/5
windy
P(true|p) = 3/9 P(true|n) = 3/5
P(false|p) = 6/9 P(false|n) = 2/5

P(p) = 9/14

P(n) = 5/14
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Play-tennis example: classifying X

n An unseen sample
X = <rain, hot, high, false>

n P(X|p)·P(p) = 
P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) = 
3/9·2/9·3/9·6/9·9/14 = 0.010582

n P(X|n)·P(n) = 
P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) = 
2/5·2/5·4/5·2/5·5/14 = 0.018286

n Sample X is classified in class n (don’t play)
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The independence hypothesis…

n … makes computation possible
n … yields optimal classifiers when satisfied
n … but is seldom satisfied in practice, as attributes 

(variables) are often correlated.
n Surprisingly, given the naivety and strength of the 

assumption it depends upon, a Naïve Bayes’ model 
often performs reasonably well.



Handling Insufficient Data

n Problem:
q Probability of some case is 0 because of lacking of 

sample
n Solution – using smoothing:

q Smoothing takes some of the probability from the 
events with lots of the probability share and gives it to 
the other probabilities in the set.

q There are several different ways to smooth 
probabilities.

q Laplacian smoothing is one of them:
𝑃(𝑓 = 𝑣|𝑡) =

𝑐𝑜𝑢𝑛𝑡 𝑓 = 𝑣 𝑡 + 𝑘
𝑐𝑜𝑢𝑛𝑡 𝑓 𝑡 + (𝑘×|𝑑𝑜𝑚𝑎𝑖𝑛 𝑓 |)
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Handling Continuous Features -- PDF

n A probability density function (PDF) 
represents the probability distribution of a 
continuous feature using a mathematical 
function.

n A PDF defines a density curve and the shape 
of the curve is determined by:
q The statistical distribution that is used to define 

the PDF
q The values of the statistical distribution 

parameters
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Some Standard Probability Distributions

n Normal distribution

𝑁 𝑥, 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒%

('%()(
*+(

n Exponential distribution
𝐸 𝑥, 𝜆 = =𝜆𝑒

%,' 𝑓𝑜𝑟 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

n Poisson distribution

𝑃 𝑥 = 𝑘, 𝜆 =
𝜆-𝑒%,

𝑘!
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Handling Continuous Features -- Binning

n Use equal-width or equal-frequency 
techniques to bin continuous features into 
categorical features.
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Bayesian Belief Networks

n Bayesian networks use a graph-based 
representation to encode the structural relationships 
between subsets of features in a domain.

n Consequently, a Bayesian network representation is 
generally more compact than a full joint distribution, 
yet is not forced to assert global conditional 
independence between all descriptive features.

n A Bayesian Belief Network is a directed acyclical
graph that is composed of three basic elements:
q Nodes (variables)
q Edges (causal links)
q Conditional probability tables (CPT)

21



22

Bayesian Belief Network Example

Family
History

LungCancer

PositiveXRay

Smoker

Emphysema

Dyspnea

LC

~LC

(FH, S) (FH, ~S)(~FH, S) (~FH, ~S)

0.8

0.2

0.5

0.5

0.7

0.3

0.1

0.9

Bayesian Belief Networks

The conditional probability table 
for the variable LungCancer



The Meaning of Edges in BBN

n Causal: A causes B, increased probability of A 
makes B more likely.

n Inter-causal: A and B can each cause C. B 
explains C and so is evidence against A.

n Evidential: Increased probability of B makes A 
more likely. B is evidence for A. A depends on B.

23

A B

A B

A
C

B



Querying the Bayesian Belief Networks

n Each query asks for a joint probability which 
is computed by applying the chain rule 
(multiplying corresponding conditional 
probabilities for each variable involved in the 
query and its dependents).

n This is because all conditional probabilities or 
each node given its parent are in CPTs, and 
each query for conditional probability of a 
parent given its children can be computed 
using Bayes theorem.
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Markov Blanket

n For conditional independence, we need to take into account 
not only the parents of a node but also the state of its 
children and their parents.

n The set of nodes in a graph that make a node independent 
of the rest of the graph are known as Markov blanket of a 
node.

n The conditional independence of a node 𝑥! in a graph with 
n nodes is defined as:

𝑃 𝑥! 𝑥", … , 𝑥!#", 𝑥!$", … , 𝑥%
= 𝑃(𝑥!|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑥! )× 0

&∈()!*+,-%(/!)

𝑃(𝑥&|𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑥& )
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Naïve Bayes as a Special case of Bayesian 
Belief Network
n A naïve Bayes classifier is a Bayesian belief 

network with a specific topological structure.

26

T

D2D1 D3 D4



Missing Parent Value

n Computing a conditional probability for a node 
becomes more complex if the value of one or more 
of the parent nodes is unknown.

n They are the hidden variables
n Solution: for each hidden variable consider all 

possible values of this variable and perform 
summation by substituting this variable with all 
possible values in turn

n The power of BBN: When complete knowledge of 
the state of all the nodes in the network is not 
available, we can still proceed with the nodes that 
we do have knowledge of and sum out the unknown 
nodes.
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Learning with Bayesian Belief Networks

n Topology of the network is given (done by 
human experts)
q The learning task then involves inducing the CPT 

from the data
n Automated learning of network topology from 

the data
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Constructing Bayesian Network

n Choose an ordering of variables 𝑥!, … , 𝑥"
n For i = 1 to n

q Add 𝑥$ to the network
q Select parents from 𝑥&, … , 𝑥$)& such that

𝑃 𝑥$ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑥$ = 𝑃(𝑥$|𝑥&, … , 𝑥$)&)

This choice of parents guarantees
𝑃 𝑥# , … , 𝑥" = ∏$%!

" 𝑃(𝑥$| 𝑥!, … , 𝑥$&!)  
(by chain rule)

=:
$%!

"
𝑃 𝑥$ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑥$
(𝑏𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛)
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Summary

n Bayesian Belief Networks provide a clean, clear, 
manageable language and methodology for 
expressing what we are certain and uncertain about.

n Deciding conditional independence is hard in non-
causal directions.

n Causal models and conditional independence seem 
hardwired for humans è generally easy for domain 
experts to construct the network topology.

n Easy for machine to learn the CPT from the training 
dataset given the topology of the network.
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