Artiticial Intelligence
and Machine Learning

Similarity Based Learning



Big Idea

If it looks like a duck, sounds like a duck,
walks like a duck, then it IS a duck.



Applications

Document classification
Book/Movie recommendation
Customer propensity prediction



Fundamentals

The fundamentals of similarity-based learning
are:

o Feature space

An abstract n-dimensional space that is created by
taking each of the descriptive features in an ABT to be
the axes of a reference space and each instance in the
dataset is mapped to a point in the feature space based
on the values of its descriptive features.

o Similarity metrics

Measures the similarity between two instances
according to a feature space.



Metric

Mathematically, a metric must conform to the
following four criteria:
o Non-negativity: metric(a, b) >=0
o ldentity: metric(a, b) =0 <& a=>b
o Symmetry: metric(a, b) = metric(b, a)
o Triangular Inequality:
metric(a, b) <= (metric(a, c) + metric(c, b)
Where metric(a, b) is a function that returns the
distance (or dissimilarity) between two instances
a and b.



metric for Simple Attributes

p and q are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d= 1 b= s = 1 P
1 ifp#gq 0 ifp#gq
_ [p—4
n—1
Ordinal (values mapped to integers 0 ton—1, | s =1 — %L
where n is the number of values)
Interval or Ratio | d = |p — ¢| s=—d,s= ﬁ or
_ d—min_d
s=1- maz_d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Common Metric

Hamming (Manhattan) distance (p = 1)
Euclidean distance (p = 2)

Minkowski distance in a feature space with m
descriptive features:

Minkowski(a,b) = (2 abs(ali] — [i])p)%

The larger the value of p, the more emphasis
is placed on the features with large
differences in values because their
differences are raised to the power of p.



Similarity Between Binary Vectors

Common situation is that objects, p and g, have
only binary attributes

Compute similarities using the following quantities
My, = the number of attributes where p was 0 and q was 1
M, = the number of attributes where p was 1 and q was 0
Mg, = the number of attributes where p was 0 and q was 0
M, = the number of attributes where p was 1 and q was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes
= (My; + Mgg) / (Mgq + Myg + My + My)

JC = number of 11 matches / number of not-both-zero attributes values
=(Myq)/ (Mgyq + Myg + Myy)



Cosine Similarity

If d, and d, are two document vectors, then
cos( dy, d,) = (d; e d,)/||dyl[ [|dy]l ,

where e indicates vector dot product and || d || is the length of vector d.

Example:

d,=3205000200
d,=1000000102

d, e d,= 3*1 +2%0 + 0*0 + 5*0 + 0*0 + 0*0 + 00 + 2*1 + 0*0 + 0*2 = 5
I1d,|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)05 = (42) 05 = 6.481
I1d,|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1%1+0*0+2*2) 05 = (6) 05 = 2.245

cos(d,, d,)=.3150



Extended Jaccard Coetticient

Variation of Jaccard Coefficient for
continuous or count attributes

peqg

Tip,q) =
P9 = P [P —pea
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Correlation

Correlation measures the linear relationship
between objects

To compute correlation, we standardize data
objects, p and g, and then take their dot
product

P = (py —mean(p))/ std(p)

qi = (q; —mean(q))/ std(q)
correlation(p,q) = p'eq’
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General Approach for Combining Similarities

Sometimes attributes are of many different
types, but an overall similarity is needed.

1. For the k%" attribute, compute a similarity, s, in the range [0, 1.

2. Define an indicator variable, 8, for the k;;, attribute as follows:

0 if the k** attribute is a binary asymmetric attribute and both objects have
0 = a value of 0, or if one of the objects has a missing values for the k%" attribute
1 otherwise

3. Compute the overall similarity between the two objects using the following formula:

_ 2okt OkSi
> et O

stmilarity(p,q)
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Using Weights to Combine Similarities

May not want to treat all attributes the same.

o Use weights w, which are between 0 and 1 and
sum to 1.

o > he1 WOk Sk
similarity(p,q) = =
> k—10%k

n 1/r
distance(p,q) = (Z Wi [P — qk’") |
k=1

13



The Nearest Neighbor Algorithm

Require: set of training instances
Require: a query to be classified
Algorithm:

lterate across the instances and find the
Instance that is shortest distance from the
query position in the feature space.

Make a prediction for the query equal to the
value of the target feature of the nearest
neighbor.
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Advantage ot Nearest Neighbor
Algorithm

t Is a instance-based learning algorithm

o Store training examples and delay the processing
(“lazy evaluation”) until a new instance must be
classified.

It is easy to add new data items into the
training dataset to update the model.
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Flaws 1n supervised learning

Supervised machine learning is based on the
stationarity assumption which states that the data
doesn’t change — remains stationary — over time.

In the context of classification, supervised machine
learning creates models that distinguish between
the classes that are present in the dataset they are
induced from.

So if a classification model is trained to distinguish
between lions, frogs and ducks, the model will
classify a query as being either a lion, a frog or a
duck; even if the query is actually an elephant.
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Handling Noisy Data

The KNN (K nearest neighbors) model
predicts the target level with the majority vote
from the set of k nearest neighbors to the

query q.
Distance-weighted KNN:

o Weight the contribution of each of the k neighbors
according to their distance to the query point, and
give the greater weight to the closer neighbors,

1
e.g.w = AoarD?
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Data Normalization

Data features take different ranges of values.

This is equivalent to features having different
variances.

55370 21
55000 55
370 34

This can be adjusted using normalization. The
equation commonly used for range

normalization is:
a; —min(a)

,—
a; =

max(a) — min(a) X (high — low) + low

18



Predicting Continuous Targets

Using KNN algorithm, and return the average
value in the neighborhood.

Using weighted KNN algorithm, the model
prediction equation can be changed to:

1

k .

i=1(di5t(xq,xi)2 X tl)
K 1
=1dist(xg, x;)?

Model(xq) =
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Dimension Reduction

Curse of Dimensionality: distance between

neighbors could be dominated by irrelevant or
redundant attributes.

Solutions:

o feature selection — a search problem

o Find an evaluation metric to measure the score of a subset of the
features

0 Hypothesis: Good feature subsets contain features highly
correlated with the classification, yet uncorrelated to each other.

Approaches:

0 Score all combinations of features and find the best one (not
feasible)

o lteratively select the best feature stepwise (forward)
0 lteratively eliminate the worst feature stepwise (backward)
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Dimension Reduction (II)

Feature Extraction/Creation

g

It is sometimes possible to create, from the original
attributes, a new set of attributes that captures the
important information in a data set much more
effectively.

The number of new attributes can be smaller than the
number of original attributes.

One of the approaches (for all numerical attributes):
Principal Component Analysis

Given N data vectors from k-dimensions, find ¢ <= k
orthogonal vectors that can be best used to represent data

The original data set is reduced to one consisting of N data
vectors on c principal components (reduced dimensions)

Each data vector is a linear combination of the ¢ principal
component vectors
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FEtticlent Memory Search

Assuming that the training set will remain
relatively stable, it is possible to speed up the
prediction speed of a nearest neighbor model
by investing in some one-off computation to
create an index of the instances that enables
efficient retrieval of the nearest neighbors.

The best know indices:

0 k-d tree (short for k-dimensional tree)
o k-d B-tree

o Rtree
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K-D Tree

A binary search tree

A space-partitioning data structure for organizing
points in a k-dimensional space.

Each node is associated with a sub space in the
k-dimensional hyper space and all the data
points reside Iin this sub space.

Each internal node is associated with one
dimension and generates a splitting hyperplane

that divides the space into two parts, associated
with its two child nodes.

Important issue: keep it balanced
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‘ K-D Tree Example
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