Artificial Intelligence
and Machine Learning

Information Based Learning



Big Idea

Information based machine learning algorithms
try to build predictive models using only the most
informative features.

In this context an informative feature is a
descriptive feature whose values split the
iInstances in the dataset into homogeneous sets
with respect to the target feature value.

Model Representation:

o Expert systems
o Decision trees



Applications

Diagnosis
Making decisions
Customer propensity prediction



Decision Tree

A decision tree consists of:

0 a root node (or starting node),
o interior nodes

o and leaf nodes (or terminating nodes).

Each of the non-leaf nodes (root and interior)
In the tree specifies a test to be carried out on
one of the query’s descriptive features.

Each of the leaf nodes specifies a predicted
classification for the query.



‘ An Example Training Dataset

age income |studentcredit rating buys computer




‘ Sample Decision Tree

- There could be more than one tree that
/ \fits the same data!

<=30 30..40 >40

/ N
- - credit rating?

RN /N

no yes excellent fair

| | |
0 B




Decision Tree

Tid Attrib1  Attrib2  Attrib3  Class Machine

1 | Yes Large 125K |No Learning

2 |No Medium | 100K  |No Algorithm

3 |[No Small 70K No

4 Yes Medium 120K No

) No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 |No Small 85K Yes

9 No Medium 75K No

10 | No Small 90K Yes

Training Set /

Apply

Tid Attrib1  Attrib2  Attrib3 Class Model

11 | No Small 55K

12 | Yes Medium 80K ? .

13 |Yes |Large 110k B Deduction

14 | No Small 95K ?

15 | No Large 67K ?

Test Set




Advantages and Limitations

Simple to understand and interpret
Uses a white box model
Performs well with large datasets

Prone to overfitting
Not suitable for some concepts, such as XOR

The problem of learning an optimal decision
tree is known to be NP-complete.



How do we solve the NP-complete
problem?

Use greedy algorithms
Apply to building decision tree:

o In each step, choose the attribute that seems to be the
“best”

o “best” -- the attribute that most likely splits the dataset
into pure sets with respect to the target feature

o Result: shallower trees

Computational metric of the purity of a set
o Entropy

o Gini Index

o Misclassification



Entropy

Claude Shannon’s entropy model defines a
computational measure of the impurity of the
elements of a set.

An easy way to understand the entropy of a set
Is to think in terms of the uncertainty associated
with guessing the result if you were to make a
random selection from the set.

Entropy is related to the probability of an
outcome:

o High probability = Low entropy
o Low probability = High entropy

10



Entropy (1)

Shannon’s model of entropy is a weighted sum
of the logs of the probabilities of each of the
possible outcomes when we make a random
selection from a set.

Entropy at a given node t:
Entropy(t) ==> p(j|t)log p(j 1)

(NOTE: p(j | ¢) is the relative frequency of class j at node t).

o Measures homogeneity of a node.

Maximum (log n.) when records are equally distributed among
all classes implying least information

Minimum (0.0) when all records belong to one class, implying
most information

11



Examples tor computing Entropy

Entropy(t) = -~ p(j|t)log, p(j|?)

Cl 0
C2 6
Cl 1
C2 5
Cl1 2
C2 4

P(C1)=0/6=0 P(C2)=6/6=1
Entropy=-0log0-1log1=-0-0=0

P(C1) = 1/6 P(C2) = 5/6
Entropy = — (1/6) log, (1/6) — (5/6) log, (1/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6
Entropy = — (2/6) log, (2/6) — (4/6) log, (4/6) = 0.92

12



Greedy algorithm that uses entropy

Our intuition is that the ideal discriminatory
feature will partition the data into pure
subsets where all the instances in each
subset have the same classification.

One way to implement this idea is to use a
metric called information gain.

The information gain of a descriptive feature
can be understood as a measure of the
reduction in the overall entropy of a prediction
task by testing on that feature.

13



Information Gain

Information Gain:

GAIN , = Entropy(p) — (i i Entropy(i )j
i=1 7

Parent Node, p is split into k partitions;
n; is number of records in partition i

o Measures Reduction in Entropy achieved because of the
split. Choose the split that achieves most reduction

(maximizes GAIN)
o Usedin ID3

o Disadvantage: Tends to prefer splits that result in large
number of partitions, each being small but pure.

14



ID3 Algorithm

lterative Dichotomizer 3

Attempts to create the shallowest tree that is
consistent with the data that it is given

The ID3 algorithm builds the tree in a
recursive, depth-first manner, beginning at

the root node and working down to the leaf
nodes.

15



D3 (1D)

The algorithm begins by choosing the best
descriptive feature to test (i.e., the best question to
ask first) using information gain.

A root node is then added to the tree and labelled
with the selected test feature.

The training dataset is then partitioned using the
test.

For each partition a branch is grown from the node.

The process is then repeated for each of these
branches using the relevant partition of the training
set in place of the full training set and with the
selected test feature excluded from further testing.

16



Stop condition of ID3

The algorithm defines three situations where the
recursion stops and a leaf node is constructed:

a All of the instances in the dataset have the same
classification (target feature value) then return a leaf
node tree with that classification as its label.

o The set of features left to test is empty then return a
leaf node tree with the majority class of the dataset as
its classification.

o The dataset is empty return a leaf node tree with the
maijority class of the dataset at the parent node that
made the recursive call.

17



Information Gain Ratio

Information Gain tends to prefer splits that result in large number of
partitions, each being small but pure.

Gain Ratio:
GAIN c N
GainRATIO = et ; — _ j
= SpIHINFO SplitINF O > , -

Parent Node, p is split into k partitions
n; is the number of records in partition |

o Adjusts Information Gain by the entropy of the partitioning

(SplitINFO). Higher entropy partitioning (large number of small
partitions) Is penalized!

o Usedin C4.5
o Designed to overcome the disadvantage of Information Gain

18




Alternative Feature Selection Metrics —
GINI index

Gini Index for a given node t :
GINI(t)=1- [p(j DT
J

(NOTE: p(j | t) is the relative frequency of class j at node t).
o Maximum (1 - 1/n.) when records are equally distributed
among all classes, implying least interesting information

o Minimum (0.0) when all records belong to one class,
implying most interesting information

C1

0

C1

1

C1

2

C1

3

C2

6

C2

5

C2

4

C2

3

Gini=0.000

Gini=0.278

Gini=0.444

Gini=0.500

19



Examples tor computing GINI

GINI(t) =1 Z[ p(jIDT

P(C1)=0/6=0 P(C2)=6/6=1

Gini=1-P(C1)2-P(C2)2=1-0-1=0

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 — (1/6)2 - (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Cl 0
C2 6
Cl 1
C2 5
Cl1 2
C2 4

Gini =1 — (2/6)?>— (4/6)? = 0.444

20



Splitting Based on GINI

Used in CART, SLIQ, SPRINT.

When a node p is split into k partitions (children), the
quality of split is computed as,

GINI

Splzt

ﬁ GINI(i)
n

NMN

where, n; = number of records at child i,
n = number of records at node p.

Information gain can be calculated using Gini index
by replacing the entropy measure with the Gini index.

21



Alternative Feature Selection Metrics —
Misclassification

Classification error at a node t :

Error(t) =1—max P(i | ?)

Measures misclassification error made by a
node.

Maximum (1 - 1/n.) when records are equally
distributed among all classes, implying least
interesting information

Minimum (0.0) when all records belong to one
class, implying most interesting information

22



Examples of Misclassification

Error(t) =1—max P(i | ?)

Cl 0
C2 6
Cl 1
C2 5
Cl1 2
C2 4

P(C1)=0/6=0 P(C2)=6/6=1
Error=1-max(0,1)=1-1=0

P(C1)=1/6 P(C2) = 5/6
Error =1 -max (1/6, 5/6) =1 - 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6
Error =1 - max (2/6, 4/6) =1 -4/6 =1/3

23



‘ Comparison among Splitting Criteria

For a 2-class problem:

1

03r Entropy

08t
0.7+
06
05} ..
Gini
0.4t

03F

02k Misclassification

error
0.1H

0

1 | 1 | 1 | 1 1 |
0 0.1 02 03 04 05 06 07 08 083 1
P




How to Specity Test Condition?

Depends on attribute types

2 Nominal

2 Ordinal

o Continuous

Depends on number of ways to split
o 2-way split

o Multi-way split

25



Handling Continuous Descriptive Features

Different ways of handling

0 Discretization to form an ordinal categorical
attribute
Static — discretize once at the beginning

Dynamic — ranges can be found by equal interval
bucketing, equal frequency bucketing (percentiles), or
clustering.

o Binary Decision: (A <v)or (A>v)
consider all possible splits and finds the best cut
can be more compute intensive

26



Continuous Features |

Taxable
Income
> 80K??

Yes No

(i) Binary split

Hxample

Taxable
Income?

[10K,25K) [25K,50K) [50K,80K)

(i) Multi-way split




Handling Continuous Descriptive Features Using

Binary Decision
Tid Refund Marital Taxable

Status Income Cheat

Use Binary Decisions based on a

threshold value 1 |Yes |Single 125K |No
How to choose the threshold value? 2 |No Married 100K  |No
a2 Number of possible threshold B "o Single  |70K  |No

values = Number of distinct values 4 |Yes  |Married |120K  |No
o Using Gini index 5 |No Divorced |95K Yes
Each splitting value has a count matrix B No Married |60K  |No
associated with it 7 |Yes |Divorced |220K  |No
o Class counts in each of the 8 |No  |Single |85K |Yes

partitions, A<vand A>v 9 |No Married |75K  |No
Simple method to choose best v 10 [No Single  |90K  |Yes
o For each v, scan the database to -

Taxable

gather count matrix and compute its Income
Gini index > 80K?

o Computationally Inefficient!
Repetition of work. vesf \ No

28



Continuous Attributes: Computing Gini Index...

For efficient computation: for each attribute,
o Sort the attribute on values

o Linearly scan these values, each time updating the count matrix
and computing gini index

o Choose the split position that has the least gini index

Taxable Income

Sorted Values _,
Split Positions .,

55 65 72 80 87 92 97 110 122 172 230

Yes |0 | 30| 30|30 |3||1|2|2(1)3|0}3]|0ff3 |03 |O0f3]0

No [O (7 (1([6|2|[5]3|4]3|4|3|43|4|4(35|[2]|6]|1]7]0

Gini 0.420 || 0.400 (| 0.375 || 0.343 |[ 0.417 || 0.400 || 0.300 (| 0.343 || 0.375 || 0.400 | 0.420

29



Handling Continuous Descriptive
Features

Once a threshold has been set, the
dynamically created new Boolean feature can
compete with the other categorical features
for selection as the splitting feature at that
node.

This process can be repeated at each node
as the tree grows.

30



Handling Nominal Features

Multi-way split: Use as many partitions as
distinct values.

Family ﬂ Luxury
Sports

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

{Sports, @ _ OR {Family, @
Luxury} {Family} Luxury {Sports}

31



Predicting Continuous Targets

If a decision tree is used to predict
continuous target, then it is called a
regression tree.

Regression trees are constructed so as to
reduce the variance in the set of training
examples at each of the leaf nodes.

The ID3 algorithm can be adapted to use a
measure of variance rather than a measure
of classification impurity (entropy) when
selecting the bet attribute.

32



Measure of Variance

The impurity (variance) at a node can be
calculated using the following equation:

ie1(t; — t)°
n—1
The best feature to split on at a node is selected

as the one that minimizes the weighted variance
across the resulting partitions:

D,
d[best] = argmin ( z | |dD_|l| Xvar(t,Dy—;)
l Elevels(d)

var(t,D) =

33



‘ Regression Tree Example

e — it t————t—t—t—t+— | | | »

() Target

-I»---i-élmil‘-l-%%%¥!: :::s:%%m;\aa—a—a-
(b) ' © Undeditting

TN P -—

—|—|—(m3}|i-~:}=:z=—+1-::::::m3,.=: —
o7 ©) — Goldiocks

Ot 1 | | | | | —
(i) Overfittinig

Figure: (a) A get cf inslances on a centinuous number line: (h), (¢),
and (d) depict sume of Lhe potential groupings that could bhe applied
1o thes e instarces.

34



Practical Issues with Decision Trees

Overfitting --- splitting the data on an
irrelevant feature

0 To address the overfitting
Pre-pruning
Post-pruning

Under-fitting
Missing value in training data
Missing value in query

35



Pre-Pruning

Early Stopping Rule

o Stop the algorithm before it becomes a fully-grown tree
o Typical stopping conditions for a node:

Stop if all instances belong to the same class
Stop if all the attribute values are the same

o More restrictive conditions:

Stop if number of instances is less than some user-specified
threshold

Stop if class distribution of instances are independent of the
available features (e.g., using y 2 test)

Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

36



Post-Pruning

Grow decision tree to its entirety

Trim the nodes of the decision tree in a
bottom-up fashion

If generalization error improves after
trimming, replace sub-tree by a leaf node.

Class label of leaf node is determined by
majority voting

37



Example ot Post-Pruning

Class =Yes | 20

Class=No |10
Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30

Pessimistic error (After splitting)
=(9+4x0.5)/30 =11/30
PRUNE!

Class = Yes 8 Class = Yes

Class = Yes 4 Class = Yes 5

Class=No | 4 ||Class=No

Class = No 1 Class = No 1

38



Another Common Post-Pruning
Approach

Using the validation set evaluate the
prediction accuracy achieved by both the fully
grown tree and the pruned copy of the tree. If
the pruned copy of the tree performs no
worse than the fully grown tree, then the
node is a candidate for pruning.

39



Advantages of Pruning

Smaller trees are easier to interpret

Increased generalization accuracy when
there is noise in the training data (noise
dampening)

40



Model Ensembles

Rather than creating a single model, we can
generate a set of models and then make predictions
by aggregating the outputs of these models.

A prediction model that is composed of a set of
models is called a model ensemble.

In order for this approach to work the models that
are in the ensemble must be different from each
other.

There are two standard approaches to creating
ensembles:

o Boosting

o bagging

41



Boosting

Boosting works by iteratively creating models
and adding them to the ensembles.

The iteration stops when a predefined
number of models have been added.

Each new model is biased to pay more
attention to instances that previous models
miss-classified.

This is done by using a weighted dataset and
incrementally adapting the dataset used to

train the models.

42



Weighted Dataset

Each instance has an associated weight (>=0)

Initially set to 1/n where n is the number of instances
in the dataset.

After each model is added to the ensemble, it is
tested on the training data and the weights of the
iInstances the model gets correct are decreased and
the weights of the instances the model gets
iIncorrect are increased.

These weights are used as a distribution over which
the dataset is sampled to create a replicated training
set, where the replication of an instance is
proportional to its weight.

43



Boosting Ensemble

The total error of a model, E, is calculated as the sum of
the weights of the training instances for which the model
predicted wrong.

The model’s confidence factor, A, increases as E
decreases, and can be calculated as:

1 1—
A= 5 X loge(—)

Once the set of models have been created, the ensemble
makes predictions using a weighted aggregate of the
predictions made by the individual models.

The weights used in this aggregation are simply the
confidence factors associated with each model.

44



Bagging

Each model in the ensemble using bagging is trained on a
random sample of the dataset known as bootstrap
samples.

Each random sample is the same size as the dataset and
sampling with replacement is used.

Consequently, every bootstrap sample will be missing
some of the instances from the dataset, so each bootstrap
sample will be different . And this means that each model

will also be different.

Further more, each bootstrap sample can use subspace
sampling to randomly select a subset of the descriptive
features in the dataset.

The combination of bagging, subspace sampling, and
decision trees is know as a random forest model.

45



