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Big Idea

n Information based machine learning algorithms 
try to build predictive models using only the most 
informative features.

n In this context an informative feature is a 
descriptive feature whose values split the 
instances in the dataset into homogeneous sets 
with respect to the target feature value.

n Model Representation:
q Expert systems
q Decision trees
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Applications

n Diagnosis
n Making decisions
n Customer propensity prediction
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Decision Tree

n A decision tree consists of:
q a root node (or starting node),
q interior nodes
q and leaf nodes (or terminating nodes).

n Each of the non-leaf nodes (root and interior) 
in the tree specifies a test to be carried out on 
one of the query’s descriptive features.

n Each of the leaf nodes specifies a predicted 
classification for the query.
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An Example Training Dataset
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age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no



Sample Decision Tree
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age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40

There could be more than one tree that 
fits the same data!



Decision Tree
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Advantages and Limitations

n Simple to understand and interpret
n Uses a white box model
n Performs well with large datasets

n Prone to overfitting
n Not suitable for some concepts, such as XOR
n The problem of learning an optimal decision 

tree is known to be NP-complete.
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How do we solve the NP-complete 
problem?
n Use greedy algorithms
n Apply to building decision tree:

q In each step, choose the attribute that seems to be the 
“best”

q “best” -- the attribute that most likely splits the dataset 
into pure sets with respect to the target feature

q Result: shallower trees
n Computational metric of the purity of a set

q Entropy
q Gini Index
q Misclassification
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Entropy

n Claude Shannon’s entropy model defines a 
computational measure of the impurity of the 
elements of a set.

n An easy way to understand the entropy of a set 
is to think in terms of the uncertainty associated 
with guessing the result if you were to make a 
random selection from the set.

n Entropy is related to the probability of an 
outcome:
q High probability à Low entropy
q Low probability à High entropy
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Entropy (II)

n Shannon’s model of entropy is a weighted sum 
of the logs of the probabilities of each of the 
possible outcomes when we make a random 
selection from a set.

n Entropy at a given node t:

(NOTE: p( j | t) is the relative frequency of class j at node t).
q Measures homogeneity of a node. 

n Maximum (log nc) when records are equally distributed among 
all classes implying least information

n Minimum (0.0) when all records belong to one class, implying 
most information
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Examples for computing Entropy

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6          P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92
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Greedy algorithm that uses entropy

n Our intuition is that the ideal discriminatory 
feature will partition the data into pure 
subsets where all the instances in each 
subset have the same classification.

n One way to implement this idea is to use a 
metric called information gain.

n The information gain of a descriptive feature 
can be understood as a measure of the 
reduction in the overall entropy of a prediction 
task by testing on that feature.
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Information Gain
n Information Gain: 

Parent Node, p is split into k partitions;
ni is number of records in partition i

q Measures Reduction in Entropy achieved because of the 
split. Choose the split that achieves most reduction 
(maximizes GAIN)

q Used in ID3 
q Disadvantage: Tends to prefer splits that result in large 

number of partitions, each being small but pure.
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ID3 Algorithm

n Iterative Dichotomizer 3
n Attempts to create the shallowest tree that is 

consistent with the data that it is given
n The ID3 algorithm builds the tree in a 

recursive, depth-first manner, beginning at 
the root node and working down to the leaf 
nodes.
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ID3 (II)

n The algorithm begins by choosing the best 
descriptive feature to test (i.e., the best question to 
ask first) using information gain.

n A root node is then added to the tree and labelled 
with the selected test feature.

n The training dataset is then partitioned using the 
test.

n For each partition a branch is grown from the node.
n The process is then repeated for each of these 

branches using the relevant partition of the training 
set in place of the full training set and with the 
selected test feature excluded from further testing.
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Stop condition of ID3

n The algorithm defines three situations where the 
recursion stops and a leaf node is constructed:
q All of the instances in the dataset have the same 

classification (target feature value) then return a leaf 
node tree with that classification as its label.

q The set of features left to test is empty then return a 
leaf node tree with the majority class of the dataset as 
its classification.

q The dataset is empty return a leaf node tree with the 
majority class of the dataset at the parent node that 
made the recursive call.
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Information Gain Ratio

n Information Gain tends to prefer splits that result in large number of 
partitions, each being small but pure.

n Gain Ratio: 

Parent Node, p is split into k partitions
ni is the number of records in partition i

q Adjusts Information Gain by the entropy of the partitioning 
(SplitINFO). Higher entropy partitioning (large number of small 
partitions) is penalized!

q Used in C4.5
q Designed to overcome the disadvantage of Information Gain
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Alternative Feature Selection Metrics –
GINI index
n Gini Index for a given node t :

(NOTE: p( j | t) is the relative frequency of class j at node t).

q Maximum (1 - 1/nc) when records are equally distributed 
among all classes, implying least interesting information

q Minimum (0.0) when all records belong to one class, 
implying most interesting information

å-=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278
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Examples for computing GINI

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

å-=
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P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444
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Splitting Based on GINI
n Used in CART, SLIQ, SPRINT.
n When a node p is split into k partitions (children), the 

quality of split is computed as,

where, ni = number of records at child i,
n = number of records at node p.

n Information gain can be calculated using Gini index 
by replacing the entropy measure with the Gini index.
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Alternative Feature Selection Metrics –
Misclassification
n Classification error at a node t :

n Measures misclassification error made by a 
node. 

n Maximum (1 - 1/nc) when records are equally 
distributed among all classes, implying least 
interesting information

n Minimum (0.0) when all records belong to one 
class, implying most interesting information
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Examples of Misclassification

C1 0 
C2 6 

 

 

C1 2 
C2 4 

 

 

C1 1 
C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6          P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3
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Comparison among Splitting Criteria
For a 2-class problem:
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How to Specify Test Condition?

n Depends on attribute types
q Nominal
q Ordinal
q Continuous

n Depends on number of ways to split
q 2-way split
q Multi-way split
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Handling Continuous Descriptive Features

n Different ways of handling
q Discretization to form an ordinal categorical 

attribute
n Static – discretize once at the beginning
n Dynamic – ranges can be found by equal interval 

bucketing, equal frequency bucketing (percentiles), or 
clustering.

q Binary Decision: (A < v) or (A ³ v)
n consider all possible splits and finds the best cut
n can be more compute intensive
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Continuous Features Example

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K
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Handling Continuous Descriptive Features Using 
Binary Decision
n Use Binary Decisions based on a 

threshold value
n How to choose the threshold value?

q Number of possible threshold 
values = Number of distinct values

q Using Gini index
n Each splitting value has a count matrix 

associated with it
q Class counts in each of the 

partitions, A < v and A ³ v
n Simple method to choose best v

q For each v, scan the database to 
gather count matrix and compute its 
Gini index

q Computationally Inefficient! 
Repetition of work.

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

Taxable
Income
> 80K?

Yes No
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Continuous Attributes: Computing Gini Index...

n For efficient computation: for each attribute,
q Sort the attribute on values
q Linearly scan these values, each time updating the count matrix 

and computing gini index
q Choose the split position that has the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values



Handling Continuous Descriptive 
Features
n Once a threshold has been set, the 

dynamically created new Boolean feature can 
compete with the other categorical features 
for selection as the splitting feature at that 
node.

n This process can be repeated at each node 
as the tree grows.
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Handling Nominal Features

n Multi-way split: Use as many partitions as 
distinct values. 

n Binary split: Divides values into two subsets. 
Need to find optimal partitioning.

CarType
Family

Sports
Luxury

CarType
{Family, 
Luxury} {Sports}

CarType
{Sports, 
Luxury} {Family} OR



Predicting Continuous Targets

n If a decision tree is used to predict 
continuous target, then it is called a 
regression tree.

n Regression trees are constructed so as to 
reduce the variance in the set of training 
examples at each of the leaf nodes.

n The ID3 algorithm can be adapted to use a 
measure of variance rather than a measure 
of classification impurity (entropy) when 
selecting the bet attribute.
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Measure of Variance

n The impurity (variance) at a node can be 
calculated using the following equation:

𝑣𝑎𝑟 𝑡, 𝐷 =
∑!"#$ (𝑡! − 𝑡)%

𝑛 − 1
n The best feature to split on at a node is selected 

as the one that minimizes the weighted variance 
across the resulting partitions:

𝑑 𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 ( 5
& ∈&()(&*(,)

| 𝐷,"& |
| 𝐷 |

×𝑣𝑎𝑟(𝑡, 𝐷,"&)
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Regression Tree Example
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Practical Issues with Decision Trees

n Overfitting --- splitting the data on an 
irrelevant feature
q To address the overfitting

n Pre-pruning
n Post-pruning

n Under-fitting 
n Missing value in training data
n Missing value in query
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Pre-Pruning

n Early Stopping Rule
q Stop the algorithm before it becomes a fully-grown tree
q Typical stopping conditions for a node:

n Stop if all instances belong to the same class
n Stop if all the attribute values are the same

q More restrictive conditions:
n Stop if number of instances is less than some user-specified 

threshold
n Stop if class distribution of instances are independent of the 

available features (e.g., using c 2 test)
n Stop if expanding the current node does not improve impurity 

measures (e.g., Gini or information gain).
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Post-Pruning

n Grow decision tree to its entirety
n Trim the nodes of the decision tree in a 

bottom-up fashion
n If generalization error improves after 

trimming, replace sub-tree by a leaf node.
n Class label of leaf node is determined by 

majority voting
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Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30

Pessimistic error (After splitting)
= (9 + 4 ´ 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1



Another Common Post-Pruning 
Approach
n Using the validation set evaluate the 

prediction accuracy achieved by both the fully 
grown tree and the pruned copy of the tree. If 
the pruned copy of the tree performs no 
worse than the fully grown tree, then the 
node is a candidate for pruning.
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Advantages of Pruning

n Smaller trees are easier to interpret
n Increased generalization accuracy when 

there is noise in the training data (noise 
dampening)
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Model Ensembles

n Rather than creating a single model, we can 
generate a set of models and then make predictions 
by aggregating the outputs of these models.

n A prediction model that is composed of a set of 
models is called a model ensemble.

n In order for this approach to work the models that 
are in the ensemble must be different from each 
other.

n There are two standard approaches to creating 
ensembles:
q Boosting
q bagging
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Boosting

n Boosting works by iteratively creating models 
and adding them to the ensembles.

n The iteration stops when a predefined 
number of models have been added.

n Each new model is biased to pay more 
attention to instances that previous models 
miss-classified.

n This is done by using a weighted dataset and 
incrementally adapting the dataset used to 
train the models.
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Weighted Dataset

n Each instance has an associated weight (>=0)
n Initially set to 1/n where n is the number of instances 

in the dataset.
n After each model is added to the ensemble, it is 

tested on the training data and the weights of the 
instances the model gets correct are decreased and 
the weights of the instances the model gets 
incorrect are increased.

n These weights are used as a distribution over which 
the dataset is sampled to create a replicated training 
set, where the replication of an instance is 
proportional to its weight.

43



Boosting Ensemble

n The total error of a model, E, is calculated as the sum of 
the weights of the training instances for which the model 
predicted wrong.

n The model’s confidence factor, A, increases as E 
decreases, and can be calculated as:

𝐴 =
1
2
× log!(

1 − 𝐸
𝐸

)
n Once the set of models have been created, the ensemble 

makes predictions using a weighted aggregate of the 
predictions made by the individual models.

n The weights used in this aggregation are simply the 
confidence factors associated with each model.
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Bagging

n Each model in the ensemble using bagging is trained on a 
random sample of the dataset known as bootstrap 
samples.

n Each random sample is the same size as the dataset and 
sampling with replacement is used.

n Consequently, every bootstrap sample will be missing 
some of the instances from the dataset, so each bootstrap 
sample will be different . And this means that each model 
will also be different.

n Further more, each bootstrap sample can use subspace 
sampling to randomly select a subset of the descriptive 
features in the dataset.

n The combination of bagging, subspace sampling, and 
decision trees is know as a random forest model.
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