
Artificial Intelligence
and Machine Learning

Information Based Learning

1

Big Idea

n Information based machine learning algorithms
try to build predictive models using only the most
informative features.

n In this context an informative feature is a
descriptive feature whose values split the
instances in the dataset into homogeneous sets
with respect to the target feature value.

n Model Representation:
q Expert systems
q Decision trees

2

Applications

n Diagnosis
n Making decisions
n Customer propensity prediction

3

Decision Tree

n A decision tree consists of:
q a root node (or starting node),
q interior nodes
q and leaf nodes (or terminating nodes).

n Each of the non-leaf nodes (root and interior)
in the tree specifies a test to be carried out on
one of the query’s descriptive features.

n Each of the leaf nodes specifies a predicted
classification for the query.

4

An Example Training Dataset

5

age income student credit_rating buys_computer
<=30 high no fair no
<=30 high no excellent no
31…40 high no fair yes
>40 medium no fair yes
>40 low yes fair yes
>40 low yes excellent no
31…40 low yes excellent yes
<=30 medium no fair no
<=30 low yes fair yes
>40 medium yes fair yes
<=30 medium yes excellent yes
31…40 medium no excellent yes
31…40 high yes fair yes
>40 medium no excellent no

Sample Decision Tree

6

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40

There could be more than one tree that
fits the same data!

Decision Tree

7

Advantages and Limitations

n Simple to understand and interpret
n Uses a white box model
n Performs well with large datasets

n Prone to overfitting
n Not suitable for some concepts, such as XOR
n The problem of learning an optimal decision

tree is known to be NP-complete.

8

How do we solve the NP-complete
problem?
n Use greedy algorithms
n Apply to building decision tree:

q In each step, choose the attribute that seems to be the
“best”

q “best” -- the attribute that most likely splits the dataset
into pure sets with respect to the target feature

q Result: shallower trees
n Computational metric of the purity of a set

q Entropy
q Gini Index
q Misclassification

9

Entropy

n Claude Shannon’s entropy model defines a
computational measure of the impurity of the
elements of a set.

n An easy way to understand the entropy of a set
is to think in terms of the uncertainty associated
with guessing the result if you were to make a
random selection from the set.

n Entropy is related to the probability of an
outcome:
q High probability à Low entropy
q Low probability à High entropy

10

11

Entropy (II)

n Shannon’s model of entropy is a weighted sum
of the logs of the probabilities of each of the
possible outcomes when we make a random
selection from a set.

n Entropy at a given node t:

(NOTE: p(j | t) is the relative frequency of class j at node t).
q Measures homogeneity of a node.

n Maximum (log nc) when records are equally distributed among
all classes implying least information

n Minimum (0.0) when all records belong to one class, implying
most information

å-=
j

tjptjptEntropy)|(log)|()(

12

Examples for computing Entropy

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0

P(C1) = 1/6 P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6

Entropy = – (2/6) log2 (2/6) – (4/6) log2 (4/6) = 0.92

å-=
j

tjptjptEntropy)|(log)|()(
2

Greedy algorithm that uses entropy

n Our intuition is that the ideal discriminatory
feature will partition the data into pure
subsets where all the instances in each
subset have the same classification.

n One way to implement this idea is to use a
metric called information gain.

n The information gain of a descriptive feature
can be understood as a measure of the
reduction in the overall entropy of a prediction
task by testing on that feature.

13

14

Information Gain
n Information Gain:

Parent Node, p is split into k partitions;
ni is number of records in partition i

q Measures Reduction in Entropy achieved because of the
split. Choose the split that achieves most reduction
(maximizes GAIN)

q Used in ID3
q Disadvantage: Tends to prefer splits that result in large

number of partitions, each being small but pure.

÷
ø
ö

ç
è
æ-= å

=

k

i

i

split
iEntropy

n
npEntropyGAIN

1
)()(

ID3 Algorithm

n Iterative Dichotomizer 3
n Attempts to create the shallowest tree that is

consistent with the data that it is given
n The ID3 algorithm builds the tree in a

recursive, depth-first manner, beginning at
the root node and working down to the leaf
nodes.

15

ID3 (II)

n The algorithm begins by choosing the best
descriptive feature to test (i.e., the best question to
ask first) using information gain.

n A root node is then added to the tree and labelled
with the selected test feature.

n The training dataset is then partitioned using the
test.

n For each partition a branch is grown from the node.
n The process is then repeated for each of these

branches using the relevant partition of the training
set in place of the full training set and with the
selected test feature excluded from further testing.

16

Stop condition of ID3

n The algorithm defines three situations where the
recursion stops and a leaf node is constructed:
q All of the instances in the dataset have the same

classification (target feature value) then return a leaf
node tree with that classification as its label.

q The set of features left to test is empty then return a
leaf node tree with the majority class of the dataset as
its classification.

q The dataset is empty return a leaf node tree with the
majority class of the dataset at the parent node that
made the recursive call.

17

Information Gain Ratio

n Information Gain tends to prefer splits that result in large number of
partitions, each being small but pure.

n Gain Ratio:

Parent Node, p is split into k partitions
ni is the number of records in partition i

q Adjusts Information Gain by the entropy of the partitioning
(SplitINFO). Higher entropy partitioning (large number of small
partitions) is penalized!

q Used in C4.5
q Designed to overcome the disadvantage of Information Gain

18

SplitINFO
GAIN

GainRATIO Split

split
= å

=
-=

k

i

ii

n
n

n
nSplitINFO

1
log

19

Alternative Feature Selection Metrics –
GINI index
n Gini Index for a given node t :

(NOTE: p(j | t) is the relative frequency of class j at node t).

q Maximum (1 - 1/nc) when records are equally distributed
among all classes, implying least interesting information

q Minimum (0.0) when all records belong to one class,
implying most interesting information

å-=
j

tjptGINI 2)]|([1)(

C1 0
C2 6
Gini=0.000

C1 2
C2 4
Gini=0.444

C1 3
C2 3
Gini=0.500

C1 1
C2 5
Gini=0.278

20

Examples for computing GINI

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0

å-=
j

tjptGINI 2)]|([1)(

P(C1) = 1/6 P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6 P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

21

Splitting Based on GINI
n Used in CART, SLIQ, SPRINT.
n When a node p is split into k partitions (children), the

quality of split is computed as,

where, ni = number of records at child i,
n = number of records at node p.

n Information gain can be calculated using Gini index
by replacing the entropy measure with the Gini index.

å
=

=
k

i

i
split iGINI

n
nGINI

1
)(

Alternative Feature Selection Metrics –
Misclassification
n Classification error at a node t :

n Measures misclassification error made by a
node.

n Maximum (1 - 1/nc) when records are equally
distributed among all classes, implying least
interesting information

n Minimum (0.0) when all records belong to one
class, implying most interesting information

22

)|(max1)(tiPtError
i

-=

23

Examples of Misclassification

C1 0
C2 6

C1 2
C2 4

C1 1
C2 5

P(C1) = 0/6 = 0 P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0

P(C1) = 1/6 P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 2/6 P(C2) = 4/6

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

)|(max1)(tiPtError
i

-=

24

Comparison among Splitting Criteria
For a 2-class problem:

25

How to Specify Test Condition?

n Depends on attribute types
q Nominal
q Ordinal
q Continuous

n Depends on number of ways to split
q 2-way split
q Multi-way split

26

Handling Continuous Descriptive Features

n Different ways of handling
q Discretization to form an ordinal categorical

attribute
n Static – discretize once at the beginning
n Dynamic – ranges can be found by equal interval

bucketing, equal frequency bucketing (percentiles), or
clustering.

q Binary Decision: (A < v) or (A ³ v)
n consider all possible splits and finds the best cut
n can be more compute intensive

27

Continuous Features Example

Taxable
Income
> 80K?

Yes No

Taxable
Income?

(i) Binary split (ii) Multi-way split

< 10K

[10K,25K) [25K,50K) [50K,80K)

> 80K

28

Handling Continuous Descriptive Features Using
Binary Decision
n Use Binary Decisions based on a

threshold value
n How to choose the threshold value?

q Number of possible threshold
values = Number of distinct values

q Using Gini index
n Each splitting value has a count matrix

associated with it
q Class counts in each of the

partitions, A < v and A ³ v
n Simple method to choose best v

q For each v, scan the database to
gather count matrix and compute its
Gini index

q Computationally Inefficient!
Repetition of work.

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

Taxable
Income
> 80K?

Yes No

29

Continuous Attributes: Computing Gini Index...

n For efficient computation: for each attribute,
q Sort the attribute on values
q Linearly scan these values, each time updating the count matrix

and computing gini index
q Choose the split position that has the least gini index

Cheat No No No Yes Yes Yes No No No No

Taxable Income

60 70 75 85 90 95 100 120 125 220

55 65 72 80 87 92 97 110 122 172 230
<= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= >

Yes 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

No 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0.420 0.400 0.375 0.343 0.417 0.400 0.300 0.343 0.375 0.400 0.420

Split Positions
Sorted Values

Handling Continuous Descriptive
Features
n Once a threshold has been set, the

dynamically created new Boolean feature can
compete with the other categorical features
for selection as the splitting feature at that
node.

n This process can be repeated at each node
as the tree grows.

30

31

Handling Nominal Features

n Multi-way split: Use as many partitions as
distinct values.

n Binary split: Divides values into two subsets.
Need to find optimal partitioning.

CarType
Family

Sports
Luxury

CarType
{Family,
Luxury} {Sports}

CarType
{Sports,
Luxury} {Family} OR

Predicting Continuous Targets

n If a decision tree is used to predict
continuous target, then it is called a
regression tree.

n Regression trees are constructed so as to
reduce the variance in the set of training
examples at each of the leaf nodes.

n The ID3 algorithm can be adapted to use a
measure of variance rather than a measure
of classification impurity (entropy) when
selecting the bet attribute.

32

Measure of Variance

n The impurity (variance) at a node can be
calculated using the following equation:

𝑣𝑎𝑟 𝑡, 𝐷 =
∑!"#$ (𝑡! − 𝑡)%

𝑛 − 1
n The best feature to split on at a node is selected

as the one that minimizes the weighted variance
across the resulting partitions:

𝑑 𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 (5
& ∈&()(&*(,)

| 𝐷,"& |
| 𝐷 |

×𝑣𝑎𝑟(𝑡, 𝐷,"&)

33

Regression Tree Example

34

Practical Issues with Decision Trees

n Overfitting --- splitting the data on an
irrelevant feature
q To address the overfitting

n Pre-pruning
n Post-pruning

n Under-fitting
n Missing value in training data
n Missing value in query

35

Pre-Pruning

n Early Stopping Rule
q Stop the algorithm before it becomes a fully-grown tree
q Typical stopping conditions for a node:

n Stop if all instances belong to the same class
n Stop if all the attribute values are the same

q More restrictive conditions:
n Stop if number of instances is less than some user-specified

threshold
n Stop if class distribution of instances are independent of the

available features (e.g., using c 2 test)
n Stop if expanding the current node does not improve impurity

measures (e.g., Gini or information gain).

36

Post-Pruning

n Grow decision tree to its entirety
n Trim the nodes of the decision tree in a

bottom-up fashion
n If generalization error improves after

trimming, replace sub-tree by a leaf node.
n Class label of leaf node is determined by

majority voting

37

38

Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10
Error = 10/30

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30

Pessimistic error (After splitting)
= (9 + 4 ´ 0.5)/30 = 11/30

PRUNE!

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

Another Common Post-Pruning
Approach
n Using the validation set evaluate the

prediction accuracy achieved by both the fully
grown tree and the pruned copy of the tree. If
the pruned copy of the tree performs no
worse than the fully grown tree, then the
node is a candidate for pruning.

39

Advantages of Pruning

n Smaller trees are easier to interpret
n Increased generalization accuracy when

there is noise in the training data (noise
dampening)

40

Model Ensembles

n Rather than creating a single model, we can
generate a set of models and then make predictions
by aggregating the outputs of these models.

n A prediction model that is composed of a set of
models is called a model ensemble.

n In order for this approach to work the models that
are in the ensemble must be different from each
other.

n There are two standard approaches to creating
ensembles:
q Boosting
q bagging

41

Boosting

n Boosting works by iteratively creating models
and adding them to the ensembles.

n The iteration stops when a predefined
number of models have been added.

n Each new model is biased to pay more
attention to instances that previous models
miss-classified.

n This is done by using a weighted dataset and
incrementally adapting the dataset used to
train the models.

42

Weighted Dataset

n Each instance has an associated weight (>=0)
n Initially set to 1/n where n is the number of instances

in the dataset.
n After each model is added to the ensemble, it is

tested on the training data and the weights of the
instances the model gets correct are decreased and
the weights of the instances the model gets
incorrect are increased.

n These weights are used as a distribution over which
the dataset is sampled to create a replicated training
set, where the replication of an instance is
proportional to its weight.

43

Boosting Ensemble

n The total error of a model, E, is calculated as the sum of
the weights of the training instances for which the model
predicted wrong.

n The model’s confidence factor, A, increases as E
decreases, and can be calculated as:

𝐴 =
1
2
× log!(

1 − 𝐸
𝐸

)
n Once the set of models have been created, the ensemble

makes predictions using a weighted aggregate of the
predictions made by the individual models.

n The weights used in this aggregation are simply the
confidence factors associated with each model.

44

Bagging

n Each model in the ensemble using bagging is trained on a
random sample of the dataset known as bootstrap
samples.

n Each random sample is the same size as the dataset and
sampling with replacement is used.

n Consequently, every bootstrap sample will be missing
some of the instances from the dataset, so each bootstrap
sample will be different . And this means that each model
will also be different.

n Further more, each bootstrap sample can use subspace
sampling to randomly select a subset of the descriptive
features in the dataset.

n The combination of bagging, subspace sampling, and
decision trees is know as a random forest model.

45

