
Database
Management Systems

Database Applications

Motivation
• SQL is not a Turing complete language (on purpose)

• Solution: Use SQL in conjunction with a general-purpose
programming language, called host language

• Question: How can it be done?

• Embedded SQL

• Library calls (CLI – Call Level Interface)

• ODBC/JDBC (still use library calls, but ...)

The Three-Tier Architecture

• Databases can run as small, standalone programs.

• However, when a large database is used , a very common
architecture is called three tier/layer one.

• Web-Server Tier: web server processes manage the interactions
with users, collecting requests and presenting the responses.

• Application Tier: invoked by web-server process to perform the
business logic, deciding what kind of data to retrieve in
response to the request, forming the proper query

• Database Tier: execute the queries, return the data

The SQL Environment
• A SQL environment is the framework under which data may exist and SQL operations

on data may be executed.

• It contains a collection of catalogs, schemas, etc and most importantly, two special
kinds of processes: SQL clients and SQL servers.

• Client and server processes may run on the same machine.

• In order to run a database application program at a host where a SQL client exists, a
connection between the client and the server must be opened.

• A connection is like a communication channel between the client and the server.

• Exactly how to establish connection depends on the DBMS and the program method.

• client — request sender (runs the application)

• server — receiver of request (runs the SQL query)

Client-side Application
Structure

• various declarations

• establish connection to database server

• submit SQL queries to server according to the need

• receive results (if any) back

• do some further processing of the results (if needed) or process errors

• commit/rollback

• disconnect from database server  

Server-side Process

• Start the server process

• waiting for client’s requests

• response to the client’s requests

Client-Server Communication

Embedded SQL
• SQL Statements are embedded in a host language

• The application is preprocessed to pure host language program plus library
calls.

• advantage:

• preprocessing of (static) parts of queries

• various (SQL) checks before running application

• disadvantage:

• need pre-compiler

• need to be bound to a database even at compile stage

Compilation of Embedded SQL

Call Level Interface

• built on library calls

• different database product supplies different packages
(libraries)

• OCCI: Oracle C++ Call Interface

DB Application

Make Connection
• Connect to db

• All OCCI processing happens in the context of the Environment
class. To create an environment and to terminate one:  
 
Environment *env = Environment::createEnvironment(); 
Environment::terminateEnvironment(env);

• to create and terminate a connection: 
 
Connection *conn =  
 env->createConnection(userName, password, connectString); 
env->terminateConnection(conn);  
 
Note that connectString indicates where the database server runs.

Prepared vs Unprepared
• In order to submit query, you need to create a statement first.

• There are two types of statement:

• Unprepared statement: 
Statement *stmt = conn->createStatement();

• Prepared statement: 
Statement *stmt =  
 conn->createStatement(queryStringWithParameters);

• To terminate a statement and clean up the statement space: 
conn->terminateStatement(stmt);

Execute Query
• Set parameter values: 

stmt->setInt(index, value); // if value is int type 
stmt->setString(index, value); // if value is string type

• execute update queries and DDL statements: 
int status = stmt->executeUpdate(); // or 
int status = stmt->executeUpdate(query);

• execute retrieval queries: 
ResultSet *rs = stmt->executeQuery(); // or 
ResultSet *rs = stmt->executeQuery(query);

• generic execute: // not recommended 
stmt->execute(); 
stmt->execute(query);

Read Result, etc
• Get result 

while (rs->next()) { 
 string name = rs->getString(1); 
 int age = rs->getInt(2);  
}

• Commit or Rollback

• all queries in a program are considered as in a transaction

• to commit or roll back updates early: 
conn->commit(); 
conn->rollback(); 
stmt->setAutoCommit(true/false);

Compare CLI & JDBC

JDBC
• register the driver with DriverManager:  

Class.forName(driver);

• make connection: 
Connection con = DriverManager.getConnection(connectString, userid, password);

• get a statement: 
Statement stmt = con.createStatement(); //or  
stmt = con.prepareStatement(String);

• execute query: 
int status = stmt.ExecuteUpdate(optional query string); 
ResultSet rs = stmt.ExecuteQuery(optional query string);

• retrieving answer: 
boolean rs.next() 
XXX rs.getXXX(int/String) // XXX as Int or String

• close all: 
rs.close(); stmt.close(); con.commit(); con.rollback(); con.close();  

Security

• SQL Injection

• What is it?

• How to avoid it?

• sanitize user input by escaping special characters

• use prepared statement

