Database
Management Systems

Database Applications

Motivation

e SQL is not a Turing complete language (on purpose)

e Solution: Use SQL in conjunction with a general-purpose
programming language, called host language

e Question: How can it be done?
e Embedded SQL
e Library calls (CLI — Call Level Interface)

e ODBC/JDBC (still use library calls, but ...)

The Three-Tier Architecture

 Databases can run as small, standalone programs.

* However, when a large database is used , a very common
architecture is called three tier/layer one.

 Web-Server Tier: web server processes manage the interactions
with users, collecting requests and presenting the responses.

* Application Tier: invoked by web-server process to perform the
business logic, deciding what kind of data to retrieve in
response to the request, forming the proper query

 Database Tier: execute the queries, return the data

The SQL Environment

A SQL environment is the framework under which data may exist and SQL operations
on data may be executed.

It contains a collection of catalogs, schemas, etc and most importantly, two special
kinds of processes: SQL clients and SQL servers.

Client and server processes may run on the same machine.

In order to run a database application program at a host where a SQL client exists, a
connection between the client and the server must be opened.

A connection is like a communication channel between the client and the server.
Exactly how to establish connection depends on the DBMS and the program method.
client — request sender (runs the application)

server — receiver of request (runs the SQL query)

Client-side Application
Structure

various declarations

establish connection to database server

submit SQL queries to server according to the need

receive results (if any) back

do some further processing of the results (if needed) or process errors
commit/rollback

disconnect from database server

Server-side Process

e Start the server process
e waiting for client’s requests

e response to the client’s requests

Client-Server Communication

C[}‘@n"’ Soxvex
(wr\m‘né ﬁvW)

Stort

§eno? mW7L
(ina o
@4 Yegwi&*

 espond bac
reﬁ(@ol:‘w’m K\ (cheok credontid)

sond vegug
[Wa v
Frocu_s VZW}L
M (execnte ?,wug)

(here is 1)

Gen ﬂ(re%,uz,_gf J

(done, disconneed

Y0ceg s+
(es ond back P L S
G’KA O’f \/(S.l.,‘lf rrumr‘n.g)

prs o

Embedded SQL

SQL Statements are embedded in a host language

The application is preprocessed to pure host language program plus library
calls.

advantage:

e preprocessing of (static) parts of queries

e various (SQL) checks before running application
disadvantage:

e need pre-compiler

e need to be bound to a database even at compile stage

Compilation of Embedded SQL

So MCQ_ Gde :DO()Z{/MMZ
£i [with
embedded saL
(name . pc) /
PYQPT‘OCQ}SUY
Proc_ Y\O\MQ.FC
| (_Daﬂlétb&w@.
neme ., Cpy Lzbm"ﬁ

w i +h o(b
[t brary fan CJrzm/
CA”

\\/ %

Compi 01/ aker

8 t+ Namg, CPP

Q/)(Q\C u"'aL}@)

PY‘OWY‘@M

Call Level Interface

* built on library calls

e different database product supplies different packages
(libraries)

e OCCI: Oracle C++ Call Interface

DB Application

Databace
Sexvey
cxeonT

TNy
put p(arr;(

here,

]

Make Connection

e Connectto db

e All OCCI processing happens in the context of the Environment
class. To create an environment and to terminate one:

Environment *env = Environment::createEnvironment();
Environment::terminateEnvironment(env);

e to create and terminate a connection:
Connection *conn =
env->createConnection(userName, password, connectString);
env->terminateConnection(conn);

Note that connectString indicates where the database server runs.

Prepared vs Unprepared

* In order to submit query, you need to create a statement first.

There are two types of statement:

 Unprepared statement:
Statement *stmt = conn->createStatement();

* Prepared statement:
Statement *stmt =
conn->createStatement(queryStringWithParameters);

 Jo terminate a statement and clean up the statement space:
conn->terminateStatement(stmt);

Execute Query

Set parameter values:
stmt->setint(index, value); // if value is int type
stmt->setString(index, value); // if value is string type

execute update queries and DDL statements:
int status = stmt->executeUpdate(); // or
int status = stmt->executeUpdate(query);

execute retrieval queries:
ResultSet *rs = stmt->executeQuery(); // or
ResultSet *rs = stmt->executeQuery(query);

generic execute: // not recommended
stmt->execute();
stmt->execute(query);

Read Result, etc

e Get result
while (rs->next()) {
string name = rs->getString(1);
int age = rs->getint(2);
}

e Commit or Rollback

e all queries in a program are considered as in a transaction

e to commit or roll back updates early:
conn->commit();
conn->rollbacki);

stmt->setAutoCommit(true/false);

Compare CLI & JDBC

N\/SQ[O:DBC/J DBC
Omc(Q
clieat Client ovacle

Driver
O 0
roc MysGL Ovacle
v

JDBC

register the driver with DriverManager:
Class.forName(driver);

make connection:
Connection con = DriverManager.getConnection(connectString, userid, password);

get a statement:
Statement stmt = con.createStatement(); //or
stmt = con.prepareStatement(String);

execute query:
int status = stmt.ExecuteUpdate(optional query string);
ResultSet rs = stmt.ExecuteQuery(optional query string);

retrieving answetr:
boolean rs.next()
XXX rs.getXXX(int/String) // XXX as Int or String

close all:
rs.close(); stmt.close(); con.commit(); con.rollback(); con.close();

Security

SQL Injection
What is it?
How to avoid it?

e sanitize user input by escaping special characters

e use prepared statement

