Applications Programming
 Introduction to Excel Model Building

Population Model

- Math Formula:
$P[t]=P[0]^{\star} e^{\wedge}\left(r^{\star} t\right)=P[0] * \operatorname{EXP}\left(r^{\star} t\right)$
or $P[t]=P[t-1]^{*} e^{\wedge}(r)=P[t-1] * E X P(r)$
- Parameters:

P[0] - Initial population
r-Yearly growth rate

Excel Model Principles

- Put parameters in a separated area
- Data vs Information
- Data, especially parameter data, must have accompanying explanation so that its information can be understood
- Raw data vs Processed data
- Avoid repetitive manual work and write ONE formula for all similar situations

Loan Model

- Math Formula:

Assume that you borrowed N dollars with the yearly interest rate R , and decided to make monthly payment M . Then, your first month's balance would be N. And each month, the interest generated would be I = (balance*R/12); the amount to pay down the principal would be ($\mathrm{M}-\mathrm{I}$); and the new balance (balance for next month) would be (balance-(M-I)).

- Parameters:

N - Capital borrowed
R - Yearly interest rate
M - Monthly payment

Moon Movement

- Our Earth revolves around the Sun and the Moon revolves around the Earth. We want to graph the orbit of the Moon with respect to the Sun.
- To simplify the problem, we have the following assumptions:
- The orbit of the Earth around the Sun is a circle.
- The orbit of the Moon around the Earth is also a circle.
- Both orbits lie in the same plane.
- The radius of the Earth orbit is one length unit.
- A full orbit of the Earth takes one time unit (one year).

Moon Movement Formula

- Parameters:

R - Radius of Earth's orbit around the Sun
r — Radius of Moon's orbit around the Earth $(r<R)$
m - the number of full orbits of the Moon in one full Earth orbit

- then at time t (as percentage of a full Earth orbit), the Earth's position relative to the Sun is:
$<x p, y p>=<R^{*} \cos \left(2^{*} \mathrm{Pi}^{*} t\right), \mathrm{R}^{*} \sin \left(2^{*} \mathrm{Pi}^{*} t\right)>$
- and the Moon's position relative to the Earth is:
$<x r, y r>=<r^{*} \cos \left(2^{*} \mathrm{Pi}^{*} \mathrm{~m}^{\star t}\right), \mathrm{r}^{*} \sin \left(2^{*} \mathrm{Pi}^{*} \mathrm{~m}^{\star} \mathrm{t}\right)>$
- and the Moon's position relative to the Sun is:

$$
\begin{aligned}
& <x m, y m>=<R^{*} \cos \left(2^{*} \mathrm{P}^{\star} t\right)+r^{*} \cos \left(2^{*} \mathrm{Pi}^{*} \mathrm{~m}^{*} t\right) \text {, } \\
& R^{*} \sin \left(2^{\star} P^{\star} t\right)+r^{*} \sin \left(2^{*} P^{*} m^{\star} t\right)>
\end{aligned}
$$

