
 CSCI 460: Networks and Communications

1 | P a g e

Project 2: File Transfer Protocol (FTP) Server
Software Application

Objectives
1. To learn how to interpret and use a computer network protocol’s Request for Comments (RFC)

by Internet Engineering Taskforce (IETF) as an Internet Standard.
2. To understand File Transfer Protocol (FTP) from RFC 959.
3. To learn and use Unix Network or Socket programming API.
4. To implement FTP Server software according to Internet Standard outlined in RFC 959.
5. To implement FPT Server software using C++ programming language and Unix Network or

Socket programming API.

Specifications
You have been using File Transfer Protocol (FTP) to get or to store files from or to FTP servers.
You use a FTP Client software application in your host computer to communicate with an FTP
server. FTP server runs a FTP Server software application.

 CSCI 460: Networks and Communications

2 | P a g e

In this project, you are going to implement your own FTP Server software application in C++
programming language using Unix Network or Socket programming API.

FTP is a client-server protocol to transfer files to or from the servers. An FTP client sends FTP
request messages to an FTP server. FTP server interprets the request message, takes appropriate
action, and sends back response message to the client. RFC 959 describes FTP and its request
and response messages in detail. You need to read and understand RFC 959 to complete this
project. Although, RFC 959 describes many request messages, you need to implement only the
followings:

o USER <username>
o PASS <password>
o PWD
o CWD <dirname>
o CDUP
o PASV
o NLST
o SIZE <filename>
o RETR <filename>
o QUIT

Your FTP Server software must be compatible with the FTP Client software of your first project,
which has a command-line user interface (UI) and the users can enter following user commands
through that interface.

Ø help
Ø user <username>
Ø pass <password>
Ø pwd
Ø dir
Ø cwd <dirname>
Ø cdup
Ø get <filename>
Ø quit

Some of the user commands have an argument. For example, command user has an
argument <username>. A user command and its argument is always space separated.

– Command ‘help’ displays the list of commands supported by this software application, their
syntax, and meaning.

 CSCI 460: Networks and Communications

3 | P a g e

– Command ‘user <username>’ sends username to the FTP server for authentication using
‘USER <username>’ FTP request message. You need to support only one user with user name
‘csci460’ and password ‘460pass’.

– Command ‘pass <password>’ sends the password to the FTP server for authentication using
‘PASS <password>’ FTP request message.

– Command ‘pwd’ sends ‘PWD’ FTP request message to the FTP server in order to print the
current working directory of the FTP server.

– Command ‘dir’ sends ‘PASV’ and ‘NLST’ FTP request messages in order to list the contents of
the current working directory of the FTP server.

– Command ‘cwd <dirname>’ sends ‘CWD <dirname>’ FTP request message to the FTP server
in order to change the current working directory to another directory specified by <dirname>.
If the specified directory is beyond current working directory of FTP server, an error is
reported by the server.

– Command ‘cdup’ sends ‘CDUP’ FTP request message in order to change the current working
directory to its parent directory. If the parent directory is beyond the root directory of FTP
server process, an error is reported by the server.

– Command ‘get <filename>’ sends ‘SIZE <filename>’, ‘PASV’, and ‘RETR <filename>’ FTP
request messages to FTP server in order to fetch the specified file from the current working
directory of FTP server. If the specified file is not available an error is reported by the server.

– Command ‘quit’ sends ‘QUIT’ FTP request message to FTP server in order to inform the FTP
server that the client application is quitting, so that the server can close the connection
gracefully. It also closes the client connection gracefully and terminates the software.

User commands of your FTP client application have different syntax than that of FTP request
messages. User commands are more human readable. A user command has one or more
corresponding FTP request message(s).

FTP client application interprets above user commands, translates them into appropriate FTP
request messages, sends the FTP request messages to FTP server, receives the response
messages from the server, and presents the response to the user in a user-friendly manner.

 CSCI 460: Networks and Communications

4 | P a g e

FTP Client and Server communicate request and response messages over a control connection.

FTP Server passively waits for a control connection and FTP Client actively opens the control
connection.

 CSCI 460: Networks and Communications

5 | P a g e

Some requests/responses involve a data transmission. For example, both NLST and RETR
requests involve a data transmission to transfer data as the part of a successful response. FTP
server uses a separate connection for each data transmission. A data connection is opened on
demand and closed when a data transmission is complete.

FTP server can operate either in active or in passive mode to open a data connection. In active
mode, FTP server opens the data connection with the client on demand. At first, FTP Client
choose an ephemeral port and opens a connection listener on this port. FTP Client sends this port
number to the server using PORT request message and waits for the server to open the
connection. After receiving the port number, FTP server actively opens the data connection.

!"#$%"&'

()$)'$%)#*+,%

!"#$%"&

()$)'$%)#*+,%

!"

!"#$%"&

()$)'$%)#*+,%

!"#$%"&

()$)'$%)#*+,%

#!$"$!"

%&''()*
+,*-
./

0*1)*1

234()*
+,*-
./

56(*-4

 CSCI 460: Networks and Communications

6 | P a g e

If the client is behind a firewall, FTP active mode fails to open a data connection. FTP passive
mode has been proposed to solve this problem. In passive mode, when a data connection is
required the server passively opens a connection listener so that client can send connection
request to the listener to open a data connection. Client instructs the server to enter into passive
mode by sending a PASV request message to the server. The server opens the connection listener
on a port and sends the port number to the client in its PASV response. After receiving the PASV
response, the client retrieves listener port number from the response and sends a connection
request to the listener port in order to open a data connection.

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$
-./0)12333

!%###

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$

"#!%###

&'(()*+
,-+.
/0

12)+.3

453)*+
,-+.
/0

6+7*+7

-./0)12333

 CSCI 460: Networks and Communications

7 | P a g e

In this project, you must implement passive mode and your FTP server software application, must
handle a PASV request before any data request, such as RETR and NLST.

Tasks
1. You will work on and submit this project using GIT submission system of the

department. A central repository named project2 has already been created for this
project.

2. Create your own fork of project2 on the central GIT repository using following
command.

ssh csci fork csci460/project2 csci460/$USER/project2

3. Go into your csci460 folder that you have created in your project1.

4. Create a clone of your forked project2 repository using following GIT command.

git clone csci:csci460/$USER/project2

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$
-./0

"#

12

!"#$%"&

'($()$%(#*+,%

!"#$%"&

'($()$%(#*+,%

!"#$# "$
-./0

"#

12

!%###

&'(()*+
,-+.
/0

1+2*+2

345)*+
,-+.
/0

67)+.5

 CSCI 460: Networks and Communications

8 | P a g e

5. Repository project2 has been organized as follows:

6. Continue your work in your cloned or local project2 repository and commit and push
your work to your central project2 repository as it progresses. Instructor is expecting
lots of incremental commits in the repository. Few number of commits is a red flag of
academic misconduct. Instructor, will take further steps to verify the integrity of your
work if there is any red flag of academic misconduct.

7. You will use supplied Makefile and Unix make utility to build, run, and test your server
application. You don’t need to and should not modify this Makefile.

!"#$%&'(

)*+

),*-.

*+&-,.%

"%/#,"&%

/"&

012%3*-%

'%/'

456705

)*+

),*-.

*+&-,.%

/"&

%819!-%

)*+

%819!-%

)*+

 CSCI 460: Networks and Communications

9 | P a g e

8. A README file template has been placed in the root of the application development

folder. The README file gives a general idea of the application, technologies used in
developing the application, how to build and install the application, how to use the
application, list of contributors to the application, and what type of license is given to
the users of the application. You will need to complete the README file before your
final submission.

9. Following header (*.h) files have been supplied in include folder in the repository.
a. ftp_server_connection_listener.h
b. ftp_server_connection.h
c. ftp_server_net_util.h
d. ftp_server_nlist.h
e. ftp_server_passive.h
f. ftp_server_request.h
g. ftp_server_response.h
h. ftp_server_retrieve.h
i. ftp_server_session.h

You will need to implement the functions specified in the header files in corresponding
source code files. For example, all functions in header file ‘ftp_server_request.h’ should
be implemented in ‘ftp_server_request.cpp’ file. You are not allowed to change any
header file.

10. All of your source (*.cpp) files should be in src folder of the project. The source code of
ftp_server.cpp file has been supplied, you don’t need to and should not change this
code. Implement following cpp files in your src folder.

a. ftp_server_connection_listener.cpp
b. ftp_server_connection.cpp
c. ftp_server_net_util.cpp
d. ftp_server_nlist.cpp
e. ftp_server_passive.cpp
f. ftp_server_request.cpp
g. ftp_server_response.cpp
h. ftp_server_retrieve.cpp
i. ftp_server_session.cpp
j. ftp_server.cpp

 CSCI 460: Networks and Communications

10 | P a g e

11. The lists of internal dependencies of the cpp files in this project are as follows. You will
need to include dependent header (*.h) files in each of your source (*.cpp) file.

a. ftp_server_net_util.cpp
i. ftp_server_net_util.h

b. ftp_server_connection.cpp
i. ftp_server_connection.h

c. ftp_server_connection_listener.cpp
i. ftp_server_connection_listener.h
ii. ftp_server_net_util.h

d. ftp_server_session.cpp
i. ftp_server_session.h
ii. ftp_server_net_util.h

iii. ftp_server_connection.h
iv. ftp_server_request.h
v. ftp_server_response.h

e. ftp_server_request.cpp
i. ftp_server_request.h
ii. ftp_server_net_util.h

iii. ftp_server_session.h
iv. ftp_server_connection.h
v. ftp_server_passive.h
vi. ftp_server_nlist.h

vii. ftp_server_retrieve.h
viii. ftp_server_response.h

f. ftp_server_nlist.cpp
i. ftp_server_nlist.h

g. ftp_server_passive.cpp
i. ftp_server_passive.h
ii. ftp_server_connection_listener.h

iii. ftp_server_connection.h
iv. ftp_server_net_util.h
v. ftp_server_response.h

h. ftp_server_retrieve.cpp
i. ftp_server_retrieve.h
ii. ftp_server_connection.h

iii. ftp_server_response.h
i. ftp_server.cpp

i. ftp_server_net_util.h
ii. ftp_server_connection_listener.h

iii. ftp_server_session.h

 CSCI 460: Networks and Communications

11 | P a g e

12. As mentioned earlier, you will build your FTP Server software application using build

tool make. Build tool make will compile your source codes from src folder and save all
object files in build folder. Build tool (make) will link all object files into a single
executable and save the binary file (‘ftpserver’) of the application in bin folder. Build
tool will also link necessary object files from test/build and build folders to create a test
binary (ftpservertest) in test/bin folder.

13. An example FTP Server Application binary file (ftpserver) and an example FTP Client
binary file (ftpclient) have been given in example/bin folder. An example FTP Server
Test binary file (ftpservertest) has been given in test/example/bin folder. Make clean
command will not delete these binary files and remember not to delete them yourself.

14. Test code file named ftp_server_test.cpp has been placed in test/src folder. Your
instructor has implemented all the functions prototyped in all the header files in
test/include folder in the corresponding source code files in test/src folder and these
source files are not exposed to you for technical reasons. You will not need to write
these test codes either. Compiled object files (ftp_server_test.o,
ftp_server_test_net_util.o, and ftp_client_test_command.o) from your instructor’s
codes have been supplied in test/build folder and build tool make will use these object
files and other object files from your source code to create test binary (ftpservertest) in
test/bin folder. Command make clean will not delete object files (ftp_server_test.o,
ftp_server_test_net_util.o, and ftp_client_test_command.o) from test/build folder and
you must not delete them either.

15. To see how the example ftpservertest works for deliverable1 enter following from your
project root folder and observe console outputs.

make test-example-deliverable1

These outputs will give you the idea about how many test cases your own code has to
pass. Your instructor recommends you to give close attention to these test cases. Your
project evaluation will suffer if your code does not pass all the test cases.

16. To see how the example ftpservertest works for deliverable2 enter following from your
project root folder and observe console outputs.

make test-example-deliverable2

17. To see how the example ftpservertest works for deliverable3 enter following from your
project root folder and observe console outputs.

 CSCI 460: Networks and Communications

12 | P a g e

make test-example-deliverable3

18. To see how the example ftpservertest works for deliverable1, deliverable2, and
deliverable3 together enter following from your project root folder and observe console
outputs.

make test-example

19. In order to see how the example ftpserver works, you need to run both example
ftpserver and example ftpclient in separate shell terminals. You need to run the
example ftpserver first in one terminal and then the example ftpclient in another
terminal.

a. Open two terminals and go into your project root directory in both terminals.
b. In order to run example ftpserver, type following command in one terminal.

make run-example-server

c. In order to run example ftpclient, type following command in the other terminal.

make run-example-client

d. Example ftpclient will be connected to example ftpserver automatically and will
be ready to accept user commands and send the appropriate FTP requests to the
example server.

e. Play with all the commands that the FTP client has to support. If you play enough
with the example ftplclient and example ftpserver, it will give you good idea
what is expected from you to develop in this project.

Note that all the supplied binaries were built and tested only in Linux Debian machines
of the lab. Run them in other machines at your own risks.

20. Type make clean command from the project root folder to clean up the artefacts (binary
and object files) of the project and start with your own. Remember, not to delete any
artefact yourself using other means, always use make clean to clean up old artefacts.

21. Once your code is ready, build your own binaries ftpserver and ftpservertest typing
make from your project root folder.

22. Type make test-deliverable1 to test the deliverable 1 using your own code.
23. Type make test-deliverable2 to test the deliverable 2 using your own code.
24. Type make test-deliverable2 to test the deliverable 3 using your own code.
25. Type make test to test both deliverable 1, deliverable 2, and deliverable 3 together

using your own code.

 CSCI 460: Networks and Communications

13 | P a g e

26. In order to see how your own ftpserver performs, you will need to run it as well as the

example ftpclient in two separate terminals.
a) Open two terminals and go into your project root directory in both terminals.
b) In order to run your ftpserver, type following command in one terminal.

make run-server

c) In order to run example ftpclient, type following command in the other terminal.

make run-example-client

d) Type user commands in example FTP Client application to see how your server
responds against your commands.

27. Organize your code by appropriate indentation and add adequate file and function
comments on your code. Type your name, student number, and section number at the
beginning of each cpp file that you have contributed to. You can follow coding style shown
in ‘ftp_server.cpp’.

28. Make sure you have deleted all debugging print codes that you were using to debug your
code during your development time but not necessary in the final code. Also, make sure
you have deleted all commented out codes from your final submission. The code with
poor organization and comments will also get poor evaluation.

29. Complete the README file. You need to give the general description of the application,
technologies that are used in the application, how a user can build (compile and link) and
install the application, how a user can run the application after the installation. Mention
instructor’s name and your name in the list of contributors. Give GPL license to the users
to use the application. You can google to find README examples if you are not sure how
to write one.

30. Commit and push your final code before the deadlines.

31. Commit and push the filled up contribution form if you have done your project in a
partnership with another student.

32. Your submission will be evaluated to zero if it does not compile and run.

33. Your submission will be tested by running automated test as well as by running as an
independent application for evaluation.

 CSCI 460: Networks and Communications

14 | P a g e

Deadlines and Submissions
This project has 3 incremental deliverables. The deadlines for the deliverables are as follows:

Project 2 S25N01 S25N02
 Demonstration Code Submission Demonstration Code Submission
Deliverable 1 In the lab on

March 03,
2025

11:00 PM on
March 05, 2025

In the lab on
March 05,
2025

11:00 PM on
March 05, 2025

Deliverable 2 In the lab on
March 17,
2025

11:00 PM on
March 19, 2025

In the lab on
March 19,
2025

11:00 PM on
March 19, 2025

Deliverable 3 In the lab on
April 07, 2025

11:00 PM on
April 09, 2025

In the lab on
April 09, 2025

11:00 PM on April
09, 2025

Late completion/submission of any deliverable will be evaluated as zero.

Commit and push your work from your local repository to your remote repository regularly. Use
following git commands to commit and push your work from your local repository to your remote
repository from your project’s root folder:

 git add --all

 git commit –am”A meaningful commit message that describes what is being committed”

 git push origin master

Remember ‘git add’ command has double dashes before ‘all’ and ‘git commit’ command has single dash
before ‘am’. You can also use ‘git add .’ dot option instead of ‘all’ option. Both options do the same, add
all the new and the modified files into the commit index. If you want to add only a specific file into the
commit index, you can specify the relative path of the file instead of dot or ‘all’ option. For example, if
you want to add only main.cpp file of the src folder into the commit index, you can use ‘git add
src/main.cpp’ command. You can also include multiple files or paths separated by space in the same ‘git
add’ command instead of using multiple ‘git add’ commands. Command ‘git add’ is necessary before each
‘git commit’ command. If you skip ‘git add’ command before a ‘git commit’ command, it does not perform
the actual commit of the new and modified files into the repository. Always type a meaningful message
in your ‘git commit’ command’s ‘-am’ option. For example, if you are committing after adding all the
necessary comments into your ‘Makefile’, use ‘git commit –am“Completed adding Makefile comments”’.
It is not recommended to make a huge commit instead of a number of small commits. It is also
recommended to avoid unnecessary commits. Commits should reflect the check points of your software
development milestones. Command ‘git push’ is necessary to push the local commits to the remote
repository. If you skip ‘git push’ after a ‘git commit’, your local and remote repository will become
unsynchronized. You must keep your local and remote repositories synchronized with each other.

 CSCI 460: Networks and Communications

15 | P a g e

You will find most useful git commands in this git cheat sheet from GitLab. You will be allowed to
commit and push until the deadline is over. Incremental and frequent commits and pushes are highly
expected and recommended in all assignments.

Evaluation
Project2 Test Cases FTP Request Marks Subtotal
Deliverable 1 ftp_server_net_util closeSocket 1.0
 getIP 2.0
 getPort 2.0
 getRemoteIP 2.0
 getRemotePort 2.0
 isSocketReady 5.0
 ftp_server_connection_listener startListener 7.0
 isListenerReady 0.5
 acceptConnection 4.0
 closeListener 0.5
 ftp_server_connection sendTo 2.0
 receiveFrom 2.0 30.0
Deliverable 2 ftp_server_session startSession 5.0
 stopSession 2.0
 ftp_server_request parse 1.0
 interpret 3.0
 unsupported 2.0
 QUIT 2.0
 notLoggedIn 2.0
 USER 2.0
 PASS 2.0
 PWD 2.0
 isValidPath 1.0
 CWD 2.0
 CDUP 4.0 30.0
Deliverable 3 ftp_server_passive passiveResponse 2.0
 startPassiveListener 1.0
 stopPassiveListener 1.0
 enteringIntoPassive 8.0
 ftp_server_nlst listDirEntries 4.0
 ftp_server_retrieve fileSize 2.0
 sendFile 5.0
 ftp_server_request PASV 1.0
 NLST 2.0
 SIZE 2.0
 RETR 2.0 30.0
Code Quality,
Comments, README

 15.0 15.0

Total 105

