
 CSCI 460: Networks and Communications

1 | P a g e

Project 1: File Transfer Protocol (FTP) Client
Software Application

Objectives
1. To learn how a computer network protocol is documented in a Request for Comments (RFC) by

Internet Engineering Taskforce (IETF) as an Internet Standard.

2. To understand File Transfer Protocol (FTP) from RFC 959.

3. To learn and use Unix Network or Socket programming API.

4. To implement FTP Client software according to Internet Standard outlined in RFC 959.

5. To implement FPT Client software using C++ programming language and Unix Network or Socket

programming API.

Specifications
You have been using File Transfer Protocol (FTP) to get or to store files from or to FTP servers.

You use a FTP Client software in your host computer to communicate with an FTP server. FTP

server runs a FTP Server software application.

https://www.ietf.org/
https://tools.ietf.org/html/rfc959
https://beej.us/guide/bgnet/html/
http://www.linuxhowtos.org/C_C++/socket.htm
https://tools.ietf.org/html/rfc959
https://beej.us/guide/bgnet/html/
http://www.linuxhowtos.org/C_C++/socket.htm

 CSCI 460: Networks and Communications

2 | P a g e

In this project, you are going to implement your own FTP Client software application in C++

programming language using Unix Network or Socket programming API.

FTP is a client-server protocol to transfer files to/from the servers. An FTP client sends FTP

request messages to an FTP server. FTP server interprets the request message, takes appropriate

action, and sends back response message to the client. RFC 959 describes FTP and its request

and response messages in detail. You need to read and understand RFC 959 to complete this

project. Although, RFC 959 describes many request messages, you need to implement only the

followings:

o USER

o PASS

o PWD

o CWD

o CDUP

o PASV

o NLST

o RETR

o QUIT

Your FTP Client software must have a command-line user interface (UI) so that the users can

enter commands through this interface. User commands of your application have different

syntax than that of FTP request messages. User commands are more human readable. A user

command has one or more corresponding FTP request message(s). Your software must accept

and process following user commands.

 help

 user <username>

 pass <password>

 pwd

 dir

 cwd <dirname>

 cdup

 get <filename>

 quit

Some of the user commands have an argument. For example, command user has an

argument <username>. A user command and its argument is always space separated.

– Command ‘help’ displays the list of commands supported by this software application, their

syntax, and meaning.

https://beej.us/guide/bgnet/html/
http://www.linuxhowtos.org/C_C++/socket.htm

 CSCI 460: Networks and Communications

3 | P a g e

– Command ‘user’ sends username to the FTP server for authentication. You need to support

only one user with user name ‘csci460’ and password ‘460pass’.

– Command ‘pass’ sends the password to the FTP server for authentication.

– Command ‘pwd’ prints the current working directory of the FTP server.

– Command ‘dir’ lists the contents of the current working directory of the FTP server.

– Command ‘cwd’ changes the current working directory to another directory specified in the

argument. If the specified directory is beyond current working directory of FTP server, an

error is reported by the server.

– Command ‘cdup’ changes the current working directory to its parent directory. If the parent

directory is beyond server’s base directory, an error is reported by the server.

– Command ‘get’ fetches the specified file from the current working directory of FTP server. If

the specified file is not available an error is reported by the server.

– Command ‘quit’ informs FTP server that the client application is quitting, so that the server

can close the connection gracefully. It also closes the client connection gracefully and

terminates the software.

Your FTP client software application must interpret above user commands, translate them into

appropriate FTP request messages, send the FTP request messages to FTP server, receive the

response messages from the server, and present the response to the user in a user-friendly

manner.

 CSCI 460: Networks and Communications

4 | P a g e

FTP Client and Server communicate request and response messages over a control connection.

FTP Server passively wait for a control connection and FTP Client actively open the control

connection.

Control Process

Data transfer
Process

Control Process

Data transfer
Process

21

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21

Passive
Open

By
Server

Active
Open

By
Client

Some requests/responses involve a data transmission. For example, RETR request involves a data

transmission to transfer file content as the part of a successful response. FTP server uses a

separate connection for each data transmission. A data connection is opened on demand and

closed when a data transmission is complete. FTP server can operate either in active or in passive

mode to open a data connection.

In active mode, FTP server opens the data connection with the client on demand. At first, FTP

Client choose an ephemeral port and opens a connection listener on this port. FTP Client sends

this port number to the server using PORT request message and wait for the server to open the

connection. After receiving the port number, FTP server opens the data connection.

 CSCI 460: Networks and Communications

5 | P a g e

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21
PORT 63000

63000

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21

2063000

Passive
Open

By
Client

Active
Open

By
Server

PORT 63000

If the client is behind a firewall, FTP active mode fails to open a data connection. FTP passive

mode has been proposed to solve this problem. In passive mode, when a data connection is

required the server opens a connection listener so that client can send connection request to the

listener and open a data connection. Client instructs the server to enter into passive mode by

sending a PASV request message to the server. The server opens the connection listener on a

port and sends the port number to the client in its PASV response. After receiving the PASV

response, the client retrieves listener port number and sends a connection request to the listener

port in order to open a data connection.

 CSCI 460: Networks and Communications

6 | P a g e

In this project, you must implement passive mode and your FTP client software application, must

send a PASV request before any data request, such as RETR and NLST.

Tasks
1. You will work on and submit this project using GIT submission system of the

department. A central repository named project1 has already been created for this

project.

2. You are allowed to do this project alone or with another student. Your team has to be

approved by your instructor before you proceed with your team work. If you are doing

the project alone, create your own fork of project1 on the central GIT repository using

following command. You should skip this step if you are doing the project in a team or

group.

ssh csci fork csci460/project1 csci460/$USER/project1

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21
PASV

20

20

Control Process

Data transfer
Process

Control Process

Data transfer
Process

62010 21
PASV

20

20

63000

Passive
Open

By
Server

Active
Open

By
Client

 CSCI 460: Networks and Communications

7 | P a g e

If you are working in a team, a forked repository for your team has already been

created. For example, the central repository for team1 is csci460/team1/project1. In

order to find out which team repository you have access to, type following command:

ssh csci info

3. Create a folder named csci460 in your home folder and go into your csci460 folder.

4. Create a clone of your forked project1 repository using following command if you are

working alone:

git clone csci:csci460/$USER/project1

Create a clone of your forked team project1 repository using following command if you

are working in a team (assuming you are working in team1, replace team1 with your

own team):

git clone csci:csci460/team1/project1

5. Repository project1 has been organized as follows:

 CSCI 460: Networks and Communications

8 | P a g e

project1

bin

build

include

resource

src

Makefile

test

README

bin

build

include

src

example

bin

example

bin

6. Continue your work in your cloned or local project1 repository and commit and push

your work to your central project1 repository as it progresses. Instructor is expecting

lots of incremental commits in the repository. Few number of commits is a red flag of

academic misconduct. Instructor, will take further steps to verify the integrity of your

work if there is any red flag of academic misconduct.

7. You will use supplied Makefile and Unix make utility to build, run, and test your

application. You don’t need to and should not modify this Makefile.

 CSCI 460: Networks and Communications

9 | P a g e

8. A README template file has been supplied. You will need to complete README file to

guide your user about your application. Complete your README file once you have

completed your project.

9. Following header (*.h) files have been supplied in include folder in the repository.

a. ftp_client_command.h

b. ftp_client_connection.h

c. ftp_client_session.h

d. ftp_client_ui.h

e. ftp_server_response.h

You will need to implement the functions specified in the header files in corresponding

source code files. For example, all functions in header file ‘ftp_client_command.h’

should be implemented in ‘ftp_client_command.cpp’ file. You are not allowed to

change any header file. If you modify any header file, your project will be evaluated to

zero.

10. All of your source code (cpp) files should be in src folder of the project. The source code

of ftp_client.cpp file has been supplied, you don’t need to and should not change this

code. Implement following cpp files in your src folder.

a. ftp_client_command.cpp

b. ftp_client_connection.cpp

c. ftp_client_session.cpp

d. ftp_client_ui.cpp

11. The lists of internal dependencies of the cpp files in this project are as follows.

i. ftp_client.cpp: ftp_client_session.h, ftp_client_ui.h, ftp_client_command.h

ii. ftp_client_ui.cpp: ftp_client_ui.h

iii. ftp_client_connection.cpp: ftp_client_connection.h

iv. ftp_client_sesion.cpp: ftp_client_session.h, ftp_client_connection.h,

ftp_client_command.h, ftp_client_ui.h, ftp_server_response.h

v. ftp_client_command.cpp: ftp_client_command.h, ftp_client_ui.h,

ftp_client_connection.h, ftp_client_session.h, ftp_server_response.h

12. As mentioned earlier, you will build your FTP Client software application using build tool

make. Build tool make will compile your source codes from src folder and save all object

files in build folder. Build tool (make) will link all object files into a single executable and

save the binary file (‘ftpclient’) of the application in bin folder. Build tool will also link

 CSCI 460: Networks and Communications

10 | P a g e

necessary object files from test/build and build folders to create a test binary

(ftpclienttest) in test/bin folder.

13. An example FTP Client Application binary (ftpclient) and an example FTP Server

Application binary file (ftpserver) have been given in example/bin folder. An example

FTP Client Test binary (ftpclienttest) has been given in test/example/bin folder. Make

clean command will not delete these example binary files and don’t delete them

yourself either.

14. Test code file named ftp_client_test.cpp has been placed in test/src folder. Your

instructor has implemented all the functions prototyped in all the header files in

test/include folder in the corresponding source code files in test/src folder and these

source files are not exposed to you for technical reasons. You will not need to write

these test codes either. Compiled object file (ftp_client_test.o and

ftp_client_test_net_util.o) from your instructor’s test code have been supplied in

test/build folder and build tool make will use this object file and other object files from

your source code to create your test binary (ftpclienttest) in test/bin folder. Make clean

command will not delete this test object file and don’t delete them yourself either.

15. To see how the example ftpclienttest works for deliverable1 enter following from your

project root folder and observe console outputs.

make test-example-deliverable1

These outputs will give you the idea about how many test cases your own code has to

pass. Your instructor recommends you to give close attention to these test cases. Your

project evaluation will suffer if your code does not pass all the test cases.

16. To see how the example ftpclienttest works for deliverable2 enter following from your

project root folder and observe console outputs.

make test-example-deliverable2

17. To see how the example ftpclienttest works for deliverable1 and deliverable2 together

enter following from your project root folder and observe console outputs.

make test-example

18. In order to see how the example ftpclient works, you need to run both example

ftpserver and example ftpclient in separate shell terminals. You need to run the

 CSCI 460: Networks and Communications

11 | P a g e

example ftpserver first in one terminal and then the example ftpclient in another

terminal.

a. Open two terminals and go into your project root directory in both terminals.

b. In order to run example ftpserver, type following command in one terminal.

make run-example-server

c. In order to run example ftpclient, type following command in the other terminal.

make run-example-client

d. Example ftpclient will be connected to example ftpserver automatically and will

be ready to accept user commands and send the appropriate FTP requests to the

example server.

e. Play with all the commands that the FTP client has to support. If you play enough

with the example ftplclient and example ftpserver, it will give you good idea

what is expected from you to develop in this project.

Note that all the supplied binaries were built and tested only in Linux Debian machines

of the lab. Run them in other machines at your own risks.

19. Type make clean command from the project root folder to clean up the artefacts (binary

and object files) of the project and start with your own. Remember, not to delete any

artefact yourself using other means, always use make clean to clean up old artefacts.

20. Once your code is ready, build your own binaries ftpclient and ftpclienttest typing make

from the project root folder.

21. Type make test-deliverable1 to test the deliverable 1 using your own code.

22. Type make test-deliverable2 to test the deliverable 2 using your own code.

23. Type make test to test both deliverable 1 and deliverable 2 together using your own

code.

24. In order to see how your own ftpclient performs, you will need to run it as well as the

example ftpserver in two separate terminals.

a) Open two terminals and go into your project root directory in both terminals.

b) In order to run the example ftpserver, type following command in one terminal.

make run-example-server

c) In order to run your ftpclient, type following command in the other terminal.

make run-client

 CSCI 460: Networks and Communications

12 | P a g e

d) Type user commands in your FTP Client application to see how the example server

responds against your commands.

25. Organize your code nicely and add adequate comments on your code. Type your name,

student number, and section number at the beginning of each cpp file that you have

contributed to. You can follow coding style shown in ‘ftp_client.cpp’. Make sure you have

deleted all debugging print codes that you were using to debug your code during your

development time but not necessary in the final code. Also, make sure you have deleted

all commented out codes from your final submission. The code with poor organization

and comments will also get poor evaluation.

26. Complete the README file. You need to give the general description of the application,

technologies that are used in the application, how a user can build (compile and link) and

install the application, how a user can run the application after the installation. Mention

instructor’s name and your name in the list of contributors. Give GPL license to the users

to use the application. You can google to find README examples if you are not sure how

to write one.

27. Commit and push your final code before the deadlines.

28. Commit and push the filled up contribution form if you have done your project in a

partnership with another student.

29. Your submission will be evaluated to zero if it does not compile and run.

30. Your submission will be tested by running automated test as well as by running as an

independent application for evaluation.

Partnership
You are allowed to complete this project with another student. In that case, your

contributions must be marked in your source code. If you are the only contributor of a

function, you should mark yourself as the sole author of that function before the function

header. If you are the only contributor of all the functions in a file, you should mark yourself

as the sole author of the file at the beginning of the file. If both you and your partner have

contributed to write a function or all the functions of a file, both of you should mark

yourselves as the authors at appropriate place in the code. You and your partner must

complete, sign, and submit contribution form.

 CSCI 460: Networks and Communications

13 | P a g e

Deadlines and Submissions

This project has 2 incremental deliverables. The deadlines for the deliverables are as follows:

Project 1 S24N01 S24N02
 Demonstration Code Submission Demonstration Code Submission

Deliverable 1 In the lab on
January 22,
2024

11:00 PM on
January 24, 2024

In the lab on
January 24,
2024

11:00 PM on
January 24, 2024

Deliverable 2 In the lab on
February 05,
2024

11:00 PM on
February 07,
2024

In the lab on
February 07,
2024

11:00 PM on
February 07, 2024

Late completion/submission of any deliverable will be evaluated as zero.

Commit and push your work from your local repository to your remote repository regularly.

Use following git commands to commit and push your work from your local repository to your

remote repository from your project’s root folder:

 git add --all

 git commit –am”A meaningful commit message that describes what is being committed”

 git push origin master

Remember ‘git add --all’ has double dashes before ‘all’. You can also use ‘git add .’ dot option

instead of ‘all’ option. Both options do the same, add all the new and the modified files into the

commit index. If you want to add only a specific file into the commit index, you can specify the

relative path of the file instead of dot or ‘all’ option. For example, if you want to add only prog.cpp

file of the src folder into the commit index, you can use ‘git add src/prog.cpp’ command. You can

also include multiple files or paths separated by space in the same ‘git add’ command instead of

using multiple ‘git add’ commands. Command ‘git add’ is necessary before each ‘git commit’

command. If you skip ‘git add’ command before a ‘git commit’ command, it does not perform the

actual commit of the new and modified files into the repository. Always type a meaningful

message in your ‘git commit’ command’s ‘-m’ option. For example, if you are committing after

adding all the necessary comments into your ‘Makefile’, use ‘git commit –m“Added Makefile

comments”’. Remember there is a single dash before m in ‘git commit’ command. It is not

recommended to make a huge commit instead of a number of small commits. It is also

recommended to avoid unnecessary commits. Commits should reflect the check points of your

software development milestones. Command ‘git push’ is necessary to push the local commit to

the remote repository. If you skip ‘git push’ after a ‘git commit’, your local and remote repository

 CSCI 460: Networks and Communications

14 | P a g e

will become unsynchronized. You must keep your local and remote repositories synchronized

with each other using ‘git push’ after each ‘git commit’.

You will find most useful git commands in this git cheat sheet from GitLab. You will be allowed

to commit and push until the deadline is over. Incremental and frequent commits and pushes

are highly expected and recommended in this assignment.

Evaluation
Project1 Test Cases Commands Marks

Deliverable 1 ftp_client_ui 2

 ftp_client_connection 20

 ftp_client_session 5

 ftp_client_command interpret 3.0

 help 2.5

 simple 5

 user 2.5

 pass 2.5

 quit 2.5

 45

Deliverable 2 ftp_client_command pwd 2.5

 cwd 2.5

 cdup 2.5

 dir 15

 get 15

README 5

Code Quality and
Comments

 12.5 55

Total 100

http://csci.viu.ca/~kabirh/csci-git-docs/git-cheat-sheet.pdf

