
CSCI 460
Networks and Communications

Transport Layer

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

– User Datagram Protocol (UDP)

– Transport Control Protocol (TCP)

• TCP Segment Header

• TCP Connection

• TCP Flow Control

• TCP Congestion Control

• TCP Retransmission Timer

The Transport Layer

Responsible for delivering data from source to destination

nodes (across networks) with the desired reliability or quality

Physical

Link

Network

Transport

Application

Physical

Link

Network

Transport

Application

Internet

Host 1 Host 2

Services Provided to Application Layer

Transport layer adds reliability to the network layer

• Offers connectionless (e.g., UDP) and connection-

oriented (e.g, TCP) service to applications

Services Provided to Application Layer

Transport layer sends transport segments inside

network packets (inside datalink frames)

Segment

Segment

UDP (User Datagram Protocol) is a shim over IP

• Header has ports (TSAPs), length and checksum.

• UDP ports indicate the end points at the source and

destination

• UDP length counts both UDP header and payload in

bytes

• UDP checksum is optional and computed on IP pseudo

header, UDP header, and UDP payload using modulo 216

sum and its one’s complement.

UDP in TCP/IP Protocol Stack

IP pseudo header for UDP checksum

• IP fields that change in the network are zeroed out,

e.g., TTL

UDP checksum provides an end-to-end error check

UDP in TCP/IP Protocol Stack

TCP in TCP/IP Protocol Stack

TCP provides applications with a reliable byte stream

between processes; it is the workhorse of the Internet

• Many popular servers run on well-known ports using

TCP

Applications using TCP see only the byte stream and

not the segments sent as separate IP packets

TCP default data or payload size is 536 bytes. 4 TCP segments, each with

536 bytes of data in first 3 segments and 440 bytes data in the 4th segment

carried in 4 IP packets

2048 bytes of data

delivered to application

TCP in TCP/IP Protocol Stack

2048 bytes of data

handed by application

TCP Segment Header

TCP header includes addressing (ports), sliding window

(seq. / ack. number), flow control (window), error control

(checksum) and more.

TCP Segment Header

• TCP ports indicate the end points at the source and

destination

• TCP sequence number indicates the byte address of the

first byte of TCP segment in the byte stream.

• TCP acknowledge number indicates which byte in the

byte stream the receiver is expecting next and a

cumulative acknowledgement of all the bytes before it.

• TCP window size indicates the size of the buffer available

at the receiver.

• TCP checksum is computed like UDP checksum to

provide end-to-end error control. Unlike UDP, it is not

optional.

TCP Segment Header

• TCP header length counts the number of 32-bit words in

TCP header.

• TCP ACK flag indicates that the segment’s is also an

acknowledgement segment and its acknowledgement

number is a valid acknowledgment number.

• TCP SYN flag indicates that the segment is a SYN

segment.

• TCP FIN flag indicates that the segment is a FIN

segment.

• TCP RST flag indicates that the segment is a RST

segment.

TCP Segment Header

• TCP PUSH flag signals the receiver not to buffer the

payload, rather pass it to the upper layer.

• TCP URG flag signals that the segment has urgent data

to be processed immediately and the urgent data ends at

urgent pointer.

• TCP ECE flag is set by the receiver to request the sender

to reduce its congestion window. Receiver repeats ECE

until the sender reduces (50%) the congestion window and

reports a CWR to the receiver.

TCP Connection Establishment

TCP sets up connections with the three-way handshake

• Release is symmetric, also as described before

Normal case Simultaneous connect

TCP Connection Release

TCP release connections with the three-way handshake.

Established Established
FIN(seq: x, ack: y)

Close Wait
(Passive Close)

Fin Wait 1
(Active Close)

Fin Wait 2
(Active Close)

ACK(ack: x+1)

Last ACK
(Passive Close)

FIN(seq: y+y , ack: x+1)

ACK(ack: y+y +1)

Time Wait
(Active Close)

Closed
(Passive Close)

Closed
(Active Close)

TCP Connection State Modeling

The TCP connection finite state machine has more

states than our simple example from earlier.

TCP Connection State Modeling

Solid line is the normal

path for a client.

Dashed line is the normal

path for a server.

Light lines are unusual

events.

Transitions are labeled

by the cause and action,

separated by a slash.

TCP Sliding Window (Flow Control)

TCP adds flow control

to the sliding window

as before

• ACK + WIN is the

sender’s limit

TCP Sliding Window (Flow Control)

• Delayed Acknowledgements

‒ TCP receiver delays the acknowledgments for

500 msec with the hope to acquire enough data

from the sender.

‒ Minimizes the number of TCP ACK segments

over the network.

‒ Longer the response time to interactive

applications.

TCP Sliding Window (Flow Control)

• Nagle’s Algorithm

‒ When data from the applications comes at TCP

sender in small pieces send the first piece and

buffer the rest until the first acknowledgement is

returned.

‒ Minimizes the number of TCP Data segments

over the network.

‒ Longer the response time to interactive

applications, it can be deactivated using

TCP_NODELAY option.

TCP Sliding Window (Flow Control)

Need to add special cases to avoid unwanted behavior

• E.g., silly window syndrome [below]

Receiver application reads single bytes, so

sender always sends one byte segments

TCP Sliding Window (Flow Control)

• Cark Solution to Silly Window Syndrome

‒ TCP receiver delays the acknowledgments until

either the half or an MSS equivalent of the

receiver buffer is empty.

‒ TCP sender instead of sending tiny segments it

sends segments whose size is at least one MSS

or half of the receiver window size.

‒ Minimizes the number of both data and

acknowledgment segments.

‒ Longer the response time to interactive

applications.

TCP Congestion Control: Congestion

Window

TCP uses Additive Increase and Multiplicative

Decrease (AIMD) with loss signal to control congestion

• Implemented as a congestion window (cwnd) for

the number of unacknowledged segments that

may be in the network.

• A sender sends at most cwnd number of segments.

i.e., cwnd controls the sending rate, cwnd/RTT.

• cwnd is updated at the reception of every

acknowledgment segment.

• Uses several mechanisms that work together.

TCP Congestion Control

Name Mechanism Purpose

ACK

clock

Congestion window (cwnd) Smooth out packet bursts

Slow-start Double cwnd each RTT Rapidly increases send rate

to reach roughly the right

level

Additive

Increase

Increase cwnd by 1

segment each RTT

Slowly increase send rate to

probe at about the right level

Fast

retransmit

Resend lost segment after 3

duplicate ACKs

Recover from a lost segment

as soon as possible

Fast

recovery

Send new packet for each

new ACK

Recover from a lost segment

without stopping ACK clock

TCP Congestion Control: Ack Clock

• ACK Clock : The rate at which TCP sender receives the

acknowledgements, reflects the rate of the slowest link in the

network. Paces traffic and smooths out sender bursts.

• TCP congestion window (cwnd) is regulated on ACK

Clock.

ACKs pace new segments into

the network and smooth bursts

TCP Congestion Control: Slow Start Mode

• Congestion window (cwnd) starts with 1 MSS (at most 4 MSS).

• At the reception of each 1 MSS acknowledgement sender

increments the cwnd 1 MSS and sends 2 MSS, i.e., the

congestion window is doubled in every round-trip-time (RTT).

• This exponential growth continues until it reaches a threshold

called slow-start-threshold.

• Initial slow-start-threshold is set to receiver window size and

the sender enters into additive increase mode when cwnd

reaches to slow-start-threshold.

TCP Congestion Control: Slow Start Mode

Slow start grows congestion window exponentially

• Doubles cwnd every RTT while keeping ACK clock

going

Increment cwnd for

each new ACK

TCP Congestion Control: Additive Increase

Mode

• Congestion window grows linearly instead of exponentially.

Congestion window is incremented 1 MSS in every RTT.

• At the reception of each 1 MSS acknowledgement sender

sends either 2 MSS or 1 MSS depending on its current

congestion window credit and increments the congestion

window by (1 MSS x 1 MSS)/cwnd ≈ 1/cwnd.

TCP Congestion Control: Additive Increase

Mode

ACK

Additive increase grows

cwnd slowly

• Adds 1 every RTT

• Keeps ACK clock

TCP Congestion Control: Segment Loss

and Retransmission

• When a segment is lost, i.e., the retransmission timer

times out, sender’s cwnd undergoes a multiplicative

decrease by resetting the slow-start-threshold to the half

of its current cwnd and cwnd to 1 MSS.

• Sender restarts the slow-start mode, irrespective of its

current mode (slow-start or additive increase), after a

segment loss.

TCP Congestion Control: Fast

Retransmission

• Sender assumes segment loss after receiving 3

duplicate acknowledgements.

• Retransmits the lost segment, resets the slow-start-

threshold to the half of the current congestion window,

and repeats the slow start mode.

• Segment lost detection does not wait for the

retransmission timer to time out, i.e., recovers from the

loss quicker.

TCP Congestion Control: Fast

Retransmission

Slow start followed by additive increase (TCP Tahoe)

• Threshold is half of previous loss cwnd

Loss causes timeout or

3 duplicates; ACK clock

has stopped so slow-

start again

TCP Congestion Control: Fast Recovery

• After receiving 3 duplicate acknowledgements

retransmits the lost segment, resets both the congestion

window and the slow-start-threshold to the half of the

current congestion window, and enters into fast recovery

mode for a short period of time.

• Counts all the duplicate acknowledgments, including the

first 3 duplicates, and transmits a new segment against

each duplicate acknowledgement.

• Exits from the fast recovery mode when duplicate

acknowledgements ceases and repeats additive mode.

TCP Congestion Control: Fast Recovery

With fast recovery, we get the classic sawtooth (TCP Reno)

• Retransmit lost packet after 3 duplicate ACKs

• New packet for each dup. ACK until loss is repaired

The ACK clock doesn’t stop,

so no need to slow-start

TCP Congestion Control: Selective ACK

SACK (Selective ACKs) extend ACKs with a vector to

describe received segments and hence losses

• Allows for more accurate retransmissions / recovery

No way for us to know that 2 and

5 were lost with only ACKs

Explicit Congestion Notification (ECN)

• Both TCP and IP layers work in synergy.

• ECN is negotiated between TCP sender and receiver while

establishing TCP connection.

• ECN negotiated sender marks the outgoing IP packets with ECN

Capable Transport (either 01 or 10).

• If a router on the path supports ECN and experiences

congestion, it changes ECN marker of the IP packets to

Congestion Experienced (11).

Explicit Congestion Notification (ECN)

• ECN negotiated TCP receiver keeps replying with ECE (ECN-

Echo) bit set TCP segments until it receives a TCP segment with

CWR (Congestion Window Reduced) bit set.

• Upon receiving a TCP segment with ECE bit set, TCP sender

reduces the congestion window as for a segment drop and

sends a TCP segment with CWR bit set.

TCP Timer Management

TCP estimates retransmit timer from segment RTTs

• Tracks both average and variance (for Internet case)

• Timeout is set to average plus 4 x variance

LAN case – small,

regular RTT

Internet case –

large, varied RTT

TCP Timer Management

RTT = SRTTn + 4*SRTTVARn

SRTTVARn = β*SRTTVARn-1 + (1-β)*|(SRTTn – Rn)|

SRTT0 = R0

α = 0.0 … 1.0

β = 0.0 … 1.0

SRTTn = α*SRTTn-1 + (1-α)*Rn

SRTTVAR0 = R0/2

R0, R1, R2, R3, …. Rn

Summary

– User Datagram Protocol (UDP)

– Transport Control Protocol (TCP)

• TCP Segment Header

• TCP Connection

• TCP Flow Control

• TCP Congestion Control

• TCP Retransmission Timer

Next

– DNS

• Name Space

• Resource Record

• DNS Server

– HTTP

• URL

• HTML

• HTTP Methods

• HTTP Headers

– FTP

• Control and Data
Connections

• Commands and Replies

Application Layer

