CSCl 460
Networks and Communications

Transport Layer

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

— User Datagram Protocol (UDP)

— Transport Control Protocol (TCP)
 TCP Segment Header
* TCP Connection
* TCP Flow Control
* TCP Congestion Control
* TCP Retransmission Timer

The Transport Layer

Responsible for delivering data from source to destination
nodes (across networks) with the desired reliability or quality

Application Application
Transport | < " | Transport

Host 1 Host 2

Internet

Services Provided to Application Layer

Transport layer adds reliability to the network layer

« Offers connectionless (e.g., UDP) and connection-
oriented (e.g, TCP) service to applications

Host 1 Host 2

Application Application

(or session) Application/transport (or session)

layer Transport | interface layer
«~ address |/

T

TPDU

Transport 1 .| Transport
Entlt'y’ E— Transpc.r‘[entlty
| protocol l
Network — AN
address Transport/network

interface

Network layer Network layer

Services Provided to Application Layer

Transport layer sends transport segments inside
network packets (inside datalink frames)

Frame Packet Segment
header header header
/ / pd
4 4 _Z

x

Segment payload

Y

Packet payload

'

A

]

Frame payload

UDP in TCP/IP Protocol Stack

UDP (User Datagram Protocol) is a shim over IP
 Header has ports (TSAPs), length and checksum.

- 32 Bits -

Source port Destination port

UDP length UDP checksum

UDP In TCP/IP Protocol Stack

Checksum covers UDP segment and IP pseudoheader
« Filelds that change in the network are zeroed out
* Provides an end-to-end delivery check

- 32 Bits -

Source address

Destination address

00000O0O0O Protocol = 17 UDP length

TCP Iin TCP/IP Protocol Stack

TCP provides applications with a reliable byte stream
between processes; it is the workhorse of the Internet

« Popular servers run on well-known ports

Port | Protocol Use
20, 21 FTP File transfer
22 | SSH Remote login, replacement for Telnet

25 | SMTP Email
80 | HTTP World Wide Web
110 | POP-3 Remote email access
143 | IMAP Remote email access
443 | HTTPS Secure Web (HTTP over SSL/TLS)
543 | RTSP Media player control
631 | IPP Printer sharing

TCP In TCP/IP Protocol Stack

Applications using TCP see only the byte stream and
not the segments sent as separate IP packets

A B C D A B C D
2048 bytes of data 2048 bytes of data
handed by application delivered to application

IP header \ / TCP header

A B C D

Four TCP segments, each with 512 bytes of
data and carried in an IP packet

TCP Segment Header

TCP header includes addressing (ports), sliding window
(seq. / ack. number), flow control (window), error control
(checksum) and more.

- 32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP CIElU|A|P|R|S|F
header WICIR|C| S| S|Y]|I Window size
length RIEIG|K|H| T| N[N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

— i
5

TCP Connection Establishment

TCP sets up connections with the three-way handshake
 Release is symmetric, also as described before

Host 1 Host 2 Host 1 Host 2
SYN (SEQZ y)
- 1)
_y ACK=XT
YN (SEQZY: .

- Time

(SE

Q=X+1-ACK=y+”

Normal case Simultaneous connect

TCP Connection Release

TCP release connections with the three-way handshake.

Established

Fin Wait 1
(Active Close)

Fin Wait 2
(Active Close)

Time Wait |
(Active Close)

Closed
(Active Close)

.

FIN(seq: x, ack: y)

ACK(ack: y+y’+1)

ACK(ack: x+1)

FIN(seq: y+Y’, ack: x+1

Established

Close Wait
(Passive Close)

Last ACK
(Passive Close)

Closed
(Passive Close)

TCP Connection State Modeling

The TCP connection finite state machine has more
states than our simple example from earlier.

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIME WAIT Wait for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

TCP Connection State Modeling

(Start)
CONNECT!SYN (Step 1 of the 3-way handshake)
CLOSED |
: CLOSE/-
. . . LISTEMN/- CLOSE-
Solid line is the normal SYNISYN + ACK
path for a client. (Step 2 r:B’r’tﬁé"@h’i{ﬁiﬁ&éﬁiﬁé{" LISTEN
' b
. . vy RSTI- AN SENDISYN o
Dashed line is the normal RCVD | SYN/SYN + ACK (simultaneous open) SENT
path for a server. | Ot transter state) J
y, ACKI- SYN + ACKIACK
Light lines are unusual I Temmmmmmemmmeees - EST""‘BL:SHED “(Step 3 of the 3-way handshake)
events CLOSE/FIM J Ii__1 FINIACK
o i / (Actve close) EI;E;;E'-J;'E‘}CD‘S-E])
Transitions are labeled 1 ENACK |] ; 1
by the cause and action, waT1 |~ ™| cLosine WA
separated by a slash. ACKL ACK-— | cLoseFn
¥ . ¥
N -\EIH ACK."ACF-E_ TIME [AST
WAIT 2 FINACK - WAIT ACK
- o (Timeout/) ' o
CLOSED |mmmmmemme A . -

(Go back to start)

TCP Sliding Window (Flow Control)

TCP adds flow control

to the sliding window
as before

e« ACK + WIN is the
sender’s limit

Sender

Application

doesa 2K — =

write

Application

doesa 2k —=
- s

write

Senderis
blocked

Sender may
send up fo 2K —=

"‘“1{__2&1@}::5:_5_1

—

 [ACK= 2048 WIN = 2048} ———

—{ X[sEa=zag)

Receiver Receiver's

buffer
0 4K
Empty
Y 2K
o Full
Application

I reads 2K

2K

1K 2K

TCP Sliding Window (Flow Control)

* Delayed Acknowledgements

— TCP receiver delays the acknowledgments for

500 msec with the hope to acquire enough data
from the sender.

— Minimizes the number of TCP segments over the
network.

— Longers the response time to interactive
applications.

TCP Sliding Window (Flow Control)

* Nagle’s Algorithm

— When data from the applications comes at TCP
sender in small pieces send the first piece and

buffer the rest until the first acknowledgement is
returned.

— Minimizes the number of TCP segments over the
network.

— Longers the response time to interactive

applications, it can be deactivated using
TCP_NODELAY option.

TCP Sliding Window (Flow Control)

Need to add special cases to avoid unwanted behavior
 E.g., silly window syndrome [below]

4 N

Receiver's buffer is full

Application reads 1 byte

Room for one more byte |

Window update segment sent
. = New byte arrives

1Byte Receiver's buffer is full

N y

Receiver application reads single bytes, so
sender always sends one byte segments

TCP Sliding Window (Flow Control)

« Cark Solution to Silly Window Syndrome

— TCP receiver delays the acknowledgments until
either the half or an MSS equivalent of the
receiver buffer is empty.

— TCP sender instead of sending tiny segments it
sends segments whose size is at least one MSS
or half of the receiver window size.

— Longers the response time to interactive
applications.

TCP Congestion Control

TCP uses AIMD with loss signal to control congestion

Implemented as a congestion window (cwnd) for
the number of unacknowledged segments that may
be in the network.

Congestion window controls the sending rate, cwnd
/| RTT; window can stop sender quickly.

Uses several mechanisms that work together.

TCP Congestion Control

Name Mechanism Purpose

ACK Congestion window (cwnd) | Smooth out packet bursts

clock

Slow-start | Double cwnd each RTT Rapidly increase send rate to
reach roughly the right level

Additive Increase cwnd by 1 segment | Slowly increase send rate to

Increase | each RTT probe at about the right level

Fast Resend lost segment after 3 | Recover from a lost segment

retransmit | duplicate ACKs as soon as possible

Fast Send new packet for each Recover from a lost segment

recovery

new ACK

without stopping ACK clock

TCP Congestion Control

1: Burst of packets 2: Burst queues at router
sent on fast link Fast link B and drains onto slow link Slow link
oooD [D ———— [otieneck)
=] - Jee G g
Sender \ d IG d N Receiver
4: Acks preserve slow 3: Receive acks packets
Ack clock

link timing at sender at slow link rate

ACKs pace new segments into
the network and smooth bursts

« ACK Clock : The rate at which TCP sender receives
the acknowledgements, reflects the rate of the slowest
link In the network. Paces traffic and smooths out
sender bursts.

« TCP congestion window is regulated on ACK Clock.

TCP Congestion Control Slow Start

Congestion window (cwind) starts with 1 MSS (at most 4
MSS).

At the reception of each acknowledgement sender
Increments the cwindl MSS and sends 2 MSS, i.e., the
window is doubled in every round-trip-time (RTT). This
exponential growth continues until it reaches a threshold
called slow-start-threshold. Initial slow-start-threshold is
set to receiver window size and the sender enters into
additive increase mode.

When a segment is lost and the retransmission timer
times out, sender sets the slow-start-threshold to the half
of the current congestion window and repeats the slow
start mode.

TCP Congestion Control

Slow start grows congestion window exponentially
 Doubles every RTT while keeping ACK clock going

TCP Sender TCP Receiver

Data

cwnd=1

Acknowledgment

cwnd=2 — 1 RTT, 1 packet

Increment cwnd for
each new ACK

J\

cwnd=3 ~ 1 RTT, 2 packets

cwnd=4

J\

cwnd=5 - 1 RTT, 4 packets

cwnd=6
cwnd=7
cwnd=8

—

~— 1 RTT, 4 packets
(pipe is full)

TCP Congestion Control Additive Increase

« Congestion window grows linearly instead of
exponentially. Congestion window is incremented 1
MSS in every RTT.

« At the reception of each acknowledgement sender
Increments the congestion window MSSxMSS/cwind.

« When a segment is lost and the retransmission
timer times out, sender sets the slow-start-threshold
to the half of the current congestion window and
repeats the slow start mode.

TCP Congestion Control

. _ TCP Sender TCP Receiver
Additive increase grows . _ e
cwnd slowly ACK — -
 Adds1l every RTT cwnd=2 -1 RTT, 1 packet

I

« Keeps ACK clock
-1 RTT, 2 packets

cwnd=3

L

~ 1 RTT, 3 packets

cwnd=4 |

J 1RTT, 4 packets

cwnd=5 »- 1 RTT, 4 packets

(pipe is full)

TCP Congestion Control Fast
Retransmission

Sender assumes segment loss after receiving 3
duplicate acknowledgements.

Retransmits the lost segment, resets the slow-start-
threshold to the half of the current congestion
window, and repeats the slow start mode.

Segment lost detection does not wait for the
retransmission timer to time out, i.e., recovers
from the loss quicker.

Congestion window (KB or packets)

TCP Congestion Control

Slow start followed by additive increase (TCP Tahoe)

40

35

30

25

20

15

10

Threshold is half of previous loss cwnd

» Additive
increase

Slow
4 start

-
-
-
-
-

¥
[
r

Threshold 32 KB

Threshold 20 KB

Loss causes timeout;
ACK clock has stopped

so slow-start again\

2 4 6 8 10 12 14 16 18 20 22 24

Transmission round (RTTs)

TCP Congestion Control Fast Recovery

« After receiving 3 duplicate acknowledgements
retransmits the lost segment, resets both the
congestion window and the slow-start-threshold to
the half of the current congestion window, and
enters into fast recovery mode for a short period of
time.

« Counts all the duplicate acknowledgments and
transmits a new segment against each duplicate
acknowledgement until the segments in the network
reaches the new slow-start-threshold.

« Exits from the fast recovery mode when duplicate
acknowledgements ceases and repeats additive
mode.

TCP Congestion Control

With fast recovery, we get the classic sawtooth (TCP Reno)
« Retransmit lost packet after 3 duplicate ACKs
 New packet for each dup. ACK until loss is repaired

A

Slow

40 4 Additive
5 ; start — _.-=”7 increase
£ 351 l: Packet
= loss
Q Thresh.--4=
5 30f “
0 Fast Multiplicative
X o5 | recovery decrease
8
g or Thresholg-—-----¥---
< r\ Threshold -4
S 15 /y
£ 10 The ACK clock doesn’t stop,
° so no need to slow-start
f | | | 1] | | | | | | | | 1 1 | | | | | | |] 1 -
0 4 8 12 16 20 24 28 32 36 40 44 48

Transmission round (RTTs)

TCP Congestion Control

SACK (Selective ACKs) extend ACKs with a vector to
describe received segments and hence losses

« Allows for more accurate retransmissions / recovery

Retransmit 2 and 5!]

(Lost packets\'

& 5[[20[D

<] <] <] < Fieceiver
ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK: 3-4 SACK:®6, 3-4
No way for us to know that 2 and
5 were lost with only ACKs

Explicit Congestion Notification (ECN)

Both TCP and IP layers work in synergy.

ECN is negotiated between TCP sender and
receiver while establishing TCP connection.

ECN negotiated sender marks the outgoing IP
packets with ECN Capable Transport (either O1
or 10).

If a router on the path supports ECN and
experiences congestion, it changes ECN marker of
the IP packets to Congestion Experienced (11).

Explicit Congestion Notification (ECN)

ECN negotiated TCP receiver keeps replying with

ECE (ECN-Echo)

bit set TCP segments until it

receives a TCP segment with CWR (Congestion

Window Reduced

) bit set.

Upon receiving a

'CP segment with ECE bit set,

TCP sender reduces the congestion window as
for a segment drop and sends a TCP segment with

CWR bit set.

TCP Timer Management

TCP estimates retransmit timer from segment RTTs
« Tracks both average and variance (for Internet case)
 Timeout is set to average plus 4 x variance

03 T 03—

o
M
|
o
M
|

Probability
Probability

01+

=
-
I

)0 m

0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (microseconds) Round-trip time (milliseconds)
LAN case — small, Internet case —

regular RTT large, varied RTT

TCP Timer Management

Ry, R, R, Ry, ... R,

SRTT, = R,
SRTTVAR, = Ry/2
a=0.0..1.0

B=0.0...1.0
SRTT, = o0*SRTT, , + (1-0)*R,
SRTTVAR, = B*SRTTVAR, , + (1-B)*|(SRTT, —= R)|

RTT =SRTT, + 4*SRTTVAR,

Summary

— User Datagram Protocol (UDP)

— Transport Control Protocol (TCP)
 TCP Segment Header
* TCP Connection
* TCP Flow Control
* TCP Congestion Control
* TCP Retransmission Timer

Next

Application Layer

— DNS — FTP

* Name Space * Control and Data

* Resource Record Connections

e DNS Server Commands and Replies
— HTTP

* URL

« HTML

e HTTP Methods
e HTTP Headers

