# CSCI 460 Networks and Communications

#### Medium Access Control Sublayer

#### Humayun Kabir

Professor, CS, Vancouver Island University, BC, Canada

## Outline

- Channel Allocation Problem
- Multiple Access Protocols
  - Pure and Slotted ALOHA
  - Carrier Sense Multiple Access (CSMA)
  - CSMA with Collision Detection (CSMA/CD)
  - Binary Exponential Backoff Algorithm
- Ethernet
- Wireless
  - CSMA with Collision Avoidance (CSMA/CA)
  - WiFi(IEEE 801.11)

## The MAC Sublayer

- Multiple Access Control (MAC) sublayer is part of Data Link Layer
- It is responsible for deciding who sends next on a multi-access link



#### **Channel Allocation Problem**

For constant traffic from a fixed number (N) of users

- Divide up bandwidth using FTM, TDM, CDMA, etc.
- This is a static allocation, e.g., FM radio

This static allocation performs poorly for traffic that comes at burst

• Allocation to a user will sometimes go unused

Dynamic allocation gives the channel to a user when they need it. Potentially N times as efficient for N users.

#### **Multiple Access Protocols**

- ALOHA »
- CSMA (Carrier Sense Multiple Access) 
  »
- Collision-free protocols »
- Limited-contention protocols »
- Wireless LAN protocols »

#### ALOHA

In pure ALOHA, users transmit frames whenever they have data; users retry after a random time if collision occurs

• Efficient and low-delay under low load



#### **ALOHA**

Collisions happen when other users transmit during a vulnerable period that is twice the frame time

• Synchronizing senders to slots can reduce collisions



#### ALOHA

Slotted ALOHA is twice as efficient as pure ALOHA

- Low load wastes slots, high loads causes collisions
- Efficiency up to 1/e (37%) for random traffic models



CSMA

CSMA improves on ALOHA by sensing the channel!

• User doesn't send if it senses someone else

Variations on what to do if the channel is busy:

- 1-persistent (greedy) sends as soon as idle
- Non-persistent waits a random time then tries again
- p-persistent sends with probability p when idle

#### **1-persistent CSMA**

- When a station has data to send it persistently senses the channel and transmits the frame as soon as it gets the channel idle.
- Waits for a random time if collision occurs and starts sensing again.
- If two stations are sensing while a third station is transmitting both will seize the idle channel at the same time and collide.

#### Non-persistent CSMA

- When a station has data to send it senses the channel as before and transmits the frame if the channel is idle.
- Does not continue sensing if the channel is busy.
  Waits for a random time and starts over again.
- If collision occurs, waits for random time and starts sensing again.
- If two stations are sensing while a third station is transmitting both will not come back at the same time to seize the idle channel, i.e., less collision.

#### **P-persistent CSMA**

- Uses **slotted** channel.
- When a station has data to send it senses the channel as before.
- If the channel is busy, it waits until the beginning of the next slot for sensing.
- If the channel is idle it transmits the frame with probability p or defers until the next slot with probability q = 1 p.
- If the channel is idle in the next slot it transmits the frame with probability *p* or defers until the next slot with the probability *q* again.
- If the channel is busy in the next slot or a collision occurs it waits for a random time to start over again

#### **CSMA**– Persistence

CSMA outperforms ALOHA, and being less persistent is better under high load



## **CSMA – Collision Detection**

CSMA/CD improvement is to **detect collisions** and **abort transmissions** immediately after the detection.

- Without CD contention times are equal to frame transmission times
- With CD contention times are much shorter, i.e., improve performance



#### **Collision-Free – Bitmap**

Collision-free protocols avoid collisions entirely

• Senders must know when it is their turn to send

The basic bit-map protocol:

- Sender set a bit in contention slot if they have data
- Senders send in turn; everyone knows who has data



#### **Collision-Free – Token Ring**

Token sent round ring defines the sending order

- Station without data passes the token.
- Station with data seizes the token and sends a frame.
- Station with token passes the token after completing its frame transmission.
- Idea can be used without ring too, e.g., token bus



#### Ethernet

- Classic Ethernet »
- Switched/Fast Ethernet »
- Gigabit/10 Gigabit Ethernet »

#### Classic Ethernet – Physical Layer

One shared coaxial cable to which all hosts attached

- Up to 10 Mbps, with Manchester encoding
- Hosts ran the classic Ethernet protocol for access



MAC protocol is 1-persistent CSMA/CD (earlier)

- Random delay (backoff) after collision is computed with BEB (Binary Exponential Backoff)
- Frame format is still used with modern Ethernet.

| Bytes             | 8               | 6                      | 6                 | 2      | 0-1500 | 0-46 | 4             |
|-------------------|-----------------|------------------------|-------------------|--------|--------|------|---------------|
| Ethernet<br>(DIX) | Preamble        | Destination<br>address | Source<br>address | Туре   | Data   | Pad  | Check-<br>sum |
|                   |                 |                        |                   |        |        |      |               |
| IEEE<br>802.3     | Preamble o<br>F | Destination<br>address | Source<br>address | Length | Data   | Pad  | Check-<br>sum |

#### 8 Byte Preamble

| 10101010 | 10101010 | 10101010 | 10101010 | 10101010 | 10101010 | 10101010 | 10101011 |
|----------|----------|----------|----------|----------|----------|----------|----------|
|          |          |          |          |          |          |          | SoF      |

#### **6 Byte Destination Address**

| Unicast address          | 0xxxxxx  | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX | XXXXXXXX |
|--------------------------|----------|----------|----------|----------|----------|----------|
| Multicast address        | 1xxxxxx  | ****     | *****    | *****    | ****     | ****     |
| intericase address       |          |          |          |          |          |          |
| <b>Broadcast address</b> | 11111111 | 11111111 | 11111111 | 11111111 | 11111111 | 11111111 |

#### 6 Byte Source Address (world wide unique)

| xxxxxxxx                           | xxxxxxx | ххххххх | ххххххх   | XXXXXXXX     | XXXXXXXX |
|------------------------------------|---------|---------|-----------|--------------|----------|
|                                    |         |         |           |              |          |
| Organizationally Unique Identifier |         |         | Manufactu | rer Assigned | Number   |

#### 2 Byte Type or Length



- Indicates the type of the upper layer protocol, e.g., value 0x0800 indicates IPv4
- Value less than or equal to 0x600 or 1536 is treated as Length of the Ethernet frame. In this case, 2 byte Type field in Logical Link Control (LLC) layer will determine the type of the upper layer protocol

**Maximum Length** of an **Ethernet** frame is chosen **1500 bytes** to ensure 1500 bytes RAM in the network card will be sufficient.

Collisions can occur and take as long as  $2\tau$  to detect

- $\tau$  is the time it takes to propagate over the Ethernet
- Leads to minimum packet size for reliable detection



- **Minimum Length** of an Ethernet frame is chosen **64 bytes** considering 2500 meters long and 10Mbps link (worst case round-trip propagation time is 50 micro seconds)
- 0 to 46 (64-18) bytes **padding** is required to ensure 64 bytes minimum length.
- 2 bytes **Checksum** is CRC computed on Ethernet frame using a 32 bit generator polynomial.

#### Classic Ethernet – Performance

Efficient for large frames, even with many senders

• Degrades for small frames (and long LANs)



**Binary Exponential Backoff** for random waiting after each collision

- Time is divided into 51.2 micro second slots.
- After 1<sup>st</sup> collision station waits either 0 or 1 time slot.
- After 2<sup>nd</sup> collision station waits either 0,1,2, or 3 time slots in random.
- After 3<sup>rd</sup> collision station waits either 0,1,2,3,4,5,6, or 7 time slots in random.
- After n<sup>th</sup> collision station waits either 0,1,2,3, .....(2<sup>n</sup> -1) time slots in random.
- After 10<sup>th</sup> collision the randomization interval is frozen at a maximum of 1023 slots.
- After 16<sup>th</sup> collision station gives up.

#### Switched/Fast Ethernet

- Hubs wire all lines into a single CSMA/CD domain
- Switches isolate each port to a separate domain
  - Much greater throughput for multiple ports
  - No need for CSMA/CD with full-duplex lines



#### Switched/Fast Ethernet

Switches can be wired to computers, hubs and switches

- Hubs concentrate traffic from computers
- Switch does not concentrate frames but switches frames from source to destination.
- How to switch frames?



#### Switched/Fast Ethernet

Fast Ethernet extended Ethernet from 10 to 100 Mbps

• Twisted pair (with Cat 5) dominated the market

| Name       | Cable        | Max. segment | Advantages                          |
|------------|--------------|--------------|-------------------------------------|
| 100Base-T4 | Twisted pair | 100 m        | Uses category 3 UTP                 |
| 100Base-TX | Twisted pair | 100 m        | Full duplex at 100 Mbps (Cat 5 UTP) |
| 100Base-FX | Fiber optics | 2000 m       | Full duplex at 100 Mbps; long runs  |

## Gigabit / 10 Gigabit Ethernet

Switched Gigabit Ethernet is now the garden variety

• With full-duplex lines between computers/switches



## Gigabit / 10 Gigabit Ethernet

• Gigabit Ethernet is commonly run over twisted pair

| Name        | Cable          | Max. segment | Advantages                                        |
|-------------|----------------|--------------|---------------------------------------------------|
| 1000Base-SX | Fiber optics   | 550 m        | Multimode fiber (50, 62.5 microns)                |
| 1000Base-LX | Fiber optics   | 5000 m       | Single (10 $\mu$ ) or multimode (50, 62.5 $\mu$ ) |
| 1000Base-CX | 2 Pairs of STP | 25 m         | Shielded twisted pair                             |
| 1000Base-T  | 4 Pairs of UTP | 100 m        | Standard category 5 UTP                           |

• 10 Gigabit Ethernet is being deployed where needed

| Name        | Cable             | Max. segment | Advantages                     |
|-------------|-------------------|--------------|--------------------------------|
| 10GBase-SR  | Fiber optics      | Up to 300 m  | Multimode fiber (0.85 $\mu$ )  |
| 10GBase-LR  | Fiber optics      | 10 km        | Single-mode fiber (1.3 $\mu$ ) |
| 10GBase-ER  | Fiber optics      | 40 km        | Single-mode fiber (1.5 $\mu$ ) |
| 10GBase-CX4 | 4 Pairs of twinax | 15 m         | Twinaxial copper               |
| 10GBase-T   | 4 Pairs of UTP    | 100 m        | Category 6a UTP                |

• 40/100 Gigabit Ethernet is under development

#### Wireless LAN Protocols

Wireless has complications compared to wired.

Nodes may have different coverage regions

• Leads to hidden and exposed terminals

Nodes can't detect collisions, i.e., sense while sending

• Makes collisions expensive and to be avoided

#### Wireless LANs – Hidden terminals

<u>Hidden terminals</u> are senders that cannot sense each other but nonetheless collide at intended receiver

- Want to prevent; loss of efficiency
- A and C are hidden terminals to each other when sending to B



#### Wireless LANs – Exposed terminals

Exposed terminals are senders who can sense each other but still transmit safely (to different receivers)

- Desirably concurrency; improves performance
- B and C are exposed terminals that prevents B → A and C → D transmissions



#### Wireless LANs – MACA

MACA protocol grants access for A to send to B:

- A sends RTS to B [left]; B replies with CTS [right]
- A can send with exposed but no hidden terminals



A sends RTS to B; C and E hear and defer for CTS



B replies with CTS; D and E hear and defer for data

#### Wireless LANs

- 802.11 architecture/protocol stack »
- 802.11 physical layer »
- 802.11 MAC »
- 802.11 frames »

#### 802.11 Architecture/Protocol Stack

Wireless clients associate to a wired AP (Access Point)

• Called infrastructure mode; there is also ad-hoc mode with no AP, but that is rare.



#### 802.11 Architecture/Protocol Stack

MAC is used across different physical layers



## 802.11 physical layer

- NICs are compatible with multiple physical layers
  - E.g., 802.11 a/b/g

| Name    | Technique                 | Max. Bit Rate |
|---------|---------------------------|---------------|
| 802.11b | Spread spectrum, 2.4 GHz  | 11 Mbps       |
| 802.11g | OFDM, 2.4 GHz             | 54 Mbps       |
| 802.11a | OFDM, 5 GHz               | 54 Mbps       |
| 802.11n | OFDM with MIMO, 2.4/5 GHz | 600 Mbps      |

#### 802.11 MAC

- CSMA/CA inserts backoff slots to avoid collisions
- MAC uses ACKs/retransmissions for wireless errors



#### 802.11 MAC

Virtual channel sensing with the NAV and optional RTS/CTS (often not used) avoids hidden terminals



Time ------

#### 802.11 MAC

- Different backoff slot times add quality of service
  - Short intervals give preferred access, e.g., control, VoIP
- MAC has other mechanisms too, e.g., power save



#### 802.11 Frames

- Frames vary depending on their type (Frame control)
- Data frames have 3 addresses to pass via APs



# Repeaters, Hubs, Bridges, Switches, Routers, & Gateways

Devices are named according to the layer they process

• A bridge or LAN switch operates in the Link layer

| Application layer | Application gateway |
|-------------------|---------------------|
| Transport layer   | Transport gateway   |
| Network layer     | Router              |
| Data link layer   | Bridge, switch      |
| Physical layer    | Repeater, hub       |

# Summary

- Channel Allocation Problem
- Multiple Access Protocols
  - Pure and Slotted ALOHA
  - Carrier Sense Multiple Access (CSMA)
  - CSMA with Collision Detection (CSMA/CD)
  - Binary Exponential Backoff Algorithm
- Ethernet
- Wireless
  - CSMA with Collision Avoidance (CSMA/CA)
  - WiFi(IEEE 801.11)

# Next: Network Layer

- Store and Forward Packet
  Switching
- Datagrams
- Routers
- Routing Algorithms
  - Shortest Path Routing
  - Distance Vector Routing
  - Link State Routing
- Internet Protocol (IP)
  - IP Packet
  - IP Address
  - Routing Information Protocol (RIP)

- Open Shortest Path First Protocol (OSPF)
- Address Resolution Protocol (ARP)
- Dynamic Host Configuration Protocol (DHCP)
- Network Address Translation (NAT)
- Internet Control Message Protocol (ICMP)