CSCI 460 Networks and Communications

Medium Access Control Sublayer

Humayun Kabir

Professor, CS, Vancouver Island University, BC, Canada

Outline

- Channel Allocation Problem
- Multiple Access Protocols
 - Pure and Slotted ALOHA
 - Carrier Sense Multiple Access (CSMA)
 - CSMA with Collision Detection (CSMA/CD)
 - Binary Exponential Backoff Algorithm
 - CSMA with Collision Avoidance (CSMA/CA)
- Ethernet and WiFi
- Repeaters, Hubs, Bridges, and Switches

The MAC Sublayer

Responsible for deciding who sends next on a multi-access link

 An important part of the link layer, especially for LANs Application
Transport
Network

Link

Physical

MAC is in here!

Channel Allocation Problem

For fixed channel and traffic from N users

- Divide up bandwidth using FDM, TDM, CDMA, etc.
- This is a static allocation, e.g., FM radio

This static allocation performs poorly for bursty traffic

Allocation to a user will sometimes go unused

Channel Allocation Problem

Dynamic allocation gives the channel to a user when they need it. Potentially N times as efficient for N users.

Schemes vary with assumptions:

Assumption	Implication
Independent traffic	Often not a good model, but permits analysis
Single channel	No external way to coordinate senders
Observable collisions	Needed for reliability; mechanisms vary
Continuous or slotted time	Slotting may improve performance
Carrier sense	Can improve performance if available

Multiple Access Protocols

- ALOHA »
- CSMA (Carrier Sense Multiple Access) »
- Collision-free protocols »
- Limited-contention protocols »
- Wireless LAN protocols »

ALOHA

In pure ALOHA, users transmit frames whenever they have data; users retry after a random time for collisions

Efficient and low-delay under low load

ALOHA

Collisions happen when other users transmit during a vulnerable period that is twice the frame time

Synchronizing senders to slots can reduce collisions

ALOHA

Slotted ALOHA is twice as efficient as pure ALOHA

- Low load wastes slots, high loads causes collisions
- Efficiency up to 1/e (37%) for random traffic models

CSMA

CSMA improves on ALOHA by sensing the channel!

User doesn't send if it senses someone else

Variations on what to do if the channel is busy:

- 1-persistent (greedy) sends as soon as idle
- Nonpersistent waits a random time then tries again
- p-persistent sends with probability p when idle
 - Works on slotted time.
 - Repeats the algorithm in the next slot if it choses not to transmit in the current idle slot.
 - Waits for random time if idle slot is not found

CSMA– Persistence

CSMA outperforms ALOHA, and being less persistent is better under high load

CSMA – Collision Detection

CSMA/CD improvement is to detect/abort collisions

Reduced contention times improve performance

Collision-Free – Bitmap

Collision-free protocols avoid collisions entirely

Senders must know when it is their turn to send

The basic bit-map protocol:

- Sender set a bit in contention slot if they have data
- Senders send in turn; everyone knows who has data

Collision-Free – Token Ring

Token sent round ring defines the sending order

- Station with token may send a frame before passing
- Idea can be used without ring too, e.g., token bus

Wireless LAN Protocols

Wireless has complications compared to wired.

Nodes may have different coverage regions

Leads to <u>hidden</u> and <u>exposed</u> terminals

Nodes can't detect collisions, i.e., sense while sending

Makes collisions expensive and to be avoided

Wireless LANs – Hidden terminals

Hidden terminals are senders that cannot sense each other but nonetheless collide at intended receiver

- Want to prevent; loss of efficiency
- A and C are hidden terminals when sending to B

Wireless LANs – Exposed terminals

Exposed terminals are senders who can sense each other but still transmit safely (to different receivers)

- Desirably concurrency; improves performance
- B → A and C → D are exposed terminals

Wireless LANs – MACA

MACA protocol grants access for A to send to B:

- A sends RTS to B [left]; B replies with CTS [right]
- A can send with exposed but no hidden terminals

A sends RTS to B; C and E hear and defer for CTS

B replies with CTS; D and E hear and defer for data

Ethernet

- Classic Ethernet »
- Switched/Fast Ethernet »
- Gigabit/10 Gigabit Ethernet »

Classic Ethernet – Physical Layer

One shared coaxial cable to which all hosts attached

- Up to 10 Mbps, with Manchester encoding
- Hosts ran the classic Ethernet protocol for access

Classic Ethernet – MAC

MAC protocol is 1-persistent CSMA/CD (earlier)

- Random delay (backoff) after collision is computed with BEB (Binary Exponential Backoff)
- Frame format is still used with modern Ethernet.

Bytes	8	6	6	2	0-1500	0-46	4
Ethernet (DIX)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
,					~;·		
IEEE 802.3	Preamble S o F	Destination address	Source address	Length	Data	Pad	Check- sum

Classic Ethernet – MAC

Collisions can occur and take as long as 2τ to detect

- τ is the time it takes to propagate over the Ethernet
- Leads to minimum packet size for reliable detection

Classic Ethernet – Performance

Efficient for large frames, even with many senders

Degrades for small frames (and long LANs)

10 Mbps Ethernet, 64 byte min. frame

Switched/Fast Ethernet

- Hubs wire all lines into a single CSMA/CD domain
- Switches isolate each port to a separate domain
 - Much greater throughput for multiple ports
 - No need for CSMA/CD with full-duplex lines

Switched/Fast Ethernet

Switches can be wired to computers, hubs and switches

- Hubs concentrate traffic from computers
- Switch does not concentrate frames but switches frames from source to destination.
- How to switch frames?

Switched/Fast Ethernet

Fast Ethernet extended Ethernet from 10 to 100 Mbps

Twisted pair (with Cat 5) dominated the market

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Gigabit / 10 Gigabit Ethernet

Switched Gigabit Ethernet is now the garden variety

With full-duplex lines between computers/switches

Gigabit / 10 Gigabit Ethernet

Gigabit Ethernet is commonly run over twisted pair

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

10 Gigabit Ethernet is being deployed where needed

Name	Cable	Max. segment	Advantages
10GBase-SR	Fiber optics	Up to 300 m	Multimode fiber (0.85μ)
10GBase-LR	Fiber optics	10 km	Single-mode fiber (1.3µ)
10GBase-ER	Fiber optics	40 km	Single-mode fiber (1.5µ)
10GBase-CX4	4 Pairs of twinax	15 m	Twinaxial copper
10GBase-T	4 Pairs of UTP	100 m	Category 6a UTP

40/100 Gigabit Ethernet is under development

Wireless LANs

- 802.11 architecture/protocol stack »
- 802.11 physical layer »
- 802.11 MAC »
- 802.11 frames »

802.11 Architecture/Protocol Stack

Wireless clients associate to a wired AP (Access Point)

 Called infrastructure mode; there is also ad-hoc mode with no AP, but that is rare.

802.11 Architecture/Protocol Stack

MAC is used across different physical layers

802.11 physical layer

- NICs are compatible with multiple physical layers
 - E.g., 802.11 a/b/g

Name	Technique	Max. Bit Rate
802.11b	Spread spectrum, 2.4 GHz	11 Mbps
802.11g	OFDM, 2.4 GHz	54 Mbps
802.11a	OFDM, 5 GHz	54 Mbps
802.11n	OFDM with MIMO, 2.4/5 GHz	600 Mbps

802.11 MAC

- CSMA/CA inserts backoff slots to avoid collisions
- MAC uses ACKs/retransmissions for wireless errors

802.11 MAC

Virtual channel sensing with the NAV and optional RTS/CTS (often not used) avoids hidden terminals

802.11 MAC

- Different backoff slot times add quality of service
 - Short intervals give preferred access, e.g., control, VoIP
- MAC has other mechanisms too, e.g., power save

802.11 Frames

- Frames vary depending on their type (Frame control)
- Data frames have 3 addresses to pass via APs

Summary

- Channel Allocation Problem
- Multiple Access Protocols
 - Pure and Slotted ALOHA
 - Carrier Sense Multiple Access (CSMA)
 - CSMA with Collision Detection (CSMA/CD)
 - Binary Exponential Backoff Algorithm
 - CSMA with Collision Avoidance (CSMA/CA)
- Ethernet and WiFi
- Repeaters, Hubs, Bridges, and Switches

Next: Network Layer

- Store and Forward PacketSwitching
- Datagrams
- Routers
- Routing Algorithms
 - Shortest Path Routing
 - Distance Vector Routing
 - Link State Routing
- Internet Protocol (IP)
 - IP Packet
 - IP Address
 - Routing Information Protocol (RIP)

- Open Shortest Path First Protocol (OSPF)
- Address Resolution Protocol (ARP)
- Dynamic Host Configuration Protocol (DHCP)
- Network Address Translation (NAT)
- Internet Control Message Protocol (ICMP)