CSCl 460
Networks and Communications

Datalink Layer

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

— Connectionless services
— Framing

— Error Control

— Error-Correcting Code
— Error-Detecting Code

— Flow Control

e Stop and Wait Protocol
* Sliding Window Protocol with Go Back N
* Sliding Window Protocol with Selective Repeat

Connectionless Services

Unacknowledged connectionless service
— Frame is sent with no connection and error recovery

— Ethernet is example

Acknowledged connectionless service

— Frame is sent with no connection but with
retransmissions if needed

— Example is 802.11

Frames

Link layer accepts packets from the network layer,
and encapsulates them into frames that it sends
using the physical layer; reception is the opposite
process

Sending machine Receiving machine
Network Packet Packet
Frame
|
Link Header | Payload field Trailer Header | Payload field Trailer
Virtual data path

Physical t Actual data path J

v

Framing Methods

— Frames need to be delimited from each other by
the sender before transmitting over the physical
medium in order to facilitate the receiver to
separate them upon receptions.

— Once the frames are separated from each other
these delimiters have no other usage at the
receiver.

— Frame delimiters are not part of data link layer
protocol header.

Framing Methods

Frame delimiting methods

— Byte count »

— Flag bytes with byte stuffing »
— Flag bits with bit stuffing »

— Physical layer coding violations

* Use non-data symbol to indicate frame

Framing — Byte count

Frame begins with a count of the number of bytes in it
— Simple, but difficult to resynchronize after an error

Byte count One byte
Expected / / \ \ \
6|7 9|8

51112131415 8 o|11|2(3(4|5|6|8|7(8|9|0]1]|2]3
case " .
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes
Error

Error /

Stt112(3(4|7(6(7(8|19l6/0(1|2|3(4|5|6|8(7|8|9(0|12]3

case | > AN
Frame 1 Frame 2 Now a byte
(Wrong) count

Framing — Byte stuffing

Special flag bytes delimit frames; occurrences of flags in the
data must be stuffed (escaped)

— Longer, but easy to resynchronize after error

Frame
format

Stuffing
examples

FLAG| Header Payload field Trailer |FLAG
Original bytes After stuffing

Need to escape

A FLAG B — | A ESC | [FLAG B

i - extra ESCAPE

bytes too!

A ESC B — | A ESC | | ESC B

A ESC | [FLAG — | A ESC || ESC | | ESC | [FLAG B

A ESC | | ESC — | A ESC || ESC | | ESC | | ESC B

Framing — Bit stuffing

Stuffing done at the bit level:
— Frame flag has six consecutive 1s (not shown)
— On transmit, after five 1s in the data, a O is added
— On receive, a 0 after five 1s is deleted

Databits 011011111111111111110010

Transmitted bits 51 1011111011111011111010010

with stuffing ‘\ T /

Stuffed bits

Error Control

Error control repairs frames that are received in error
— Requires errors to be detected at the receiver
— Requires to acknowledge error free frames
— Typically retransmits the unacknowledged frames
— Timer protects against lost acknowledgements

Error control codes add structured redundancy to data so
errors can be either detected, or corrected.

Error Detection and Correction

Error correction codes:
— Hamming codes »
— Binary convolutional codes »
— Reed-Solomon and Low-Density Parity Check codes

* Mathematically complex, widely used in real
systems

Error detection codes:
— Parity »
— Checksums »
— Cyclic redundancy codes »

Error Bounds — Hamming distance

Code turns data of m bits into some codewords of (m+r) bits

Hamming distance is the minimum number of bit flips to turn
one valid codeword into any other valid one.

— Example with 4 codewords of 10 bits (m=2, r=8):

* 0000000000, 0000011111, 1111100000, and
1111111111

e Hamming distance is 5
Bounds for a code with distance:
— 2d+1 —can correct d errors (e.g., 2 errors above)
— d+1 — can detect d errors (e.g., 4 errors above)

Error Correction — Hamming code

Hamming code gives a simple way to add check bits and
correct up to a single bit error:

— Check bits are parity over subsets of the codeword

— Re-computing the parity sums (syndrome) gives the
position of the error to flip, or O if there is no error

— (11, 7) Hamming code adds 4 check bits with 7 bits
message and can correct 1 bit error either in a check
bit or in a message bit

Error Correction — Hamming code

7-bit message to send 1 0000 0 1

* Check bits are placed at the power of twos positions; e.g. 1, 2,4, and 8 in
the codeword.

* Message bits are placed at the rest of the positions; e.g. 3,5, 6,7,9, 10, and
11 in the codeword..

* Codeword with check bits and message bits: P,P,M;P,M.M.M-P;M M, M,

* Check bits are parity function over the subsets of the message bits.

Error Correction — Hamming code

Message to send 1 0 0 0 0O O0 1

* Message bit positions can be expressed as the sum of the positions of the
check bits with the least number of terms in the sum.

1 I34 8

P, P, P, Pg
3 =1+2 P, =f (M3, M, M, My, M ;) =f(1,0,0,0,1) =0
5 =1+0+4 P, =f (M3, Mg, M, M, M;) =f(1,0,0,0,1) =0
6 =0+2+4 P,=f (M, Mg, M) =f(0,0,0) =0
7 =1+2+4 Pe =f (Mg, Mo, My,) =f(0,0,1) =1
9 =1+0+0+8

10=0+2+0+8

11=1+2+0+8 Codeword sent

2 M3 Py M5 Mg M; Pg Mg M3y My,
1 O 00 120 0 1

Error Correction — Hamming code

Code word received
P, P, M3 Py Mg Mg M; Pg Mg My My,
001 01 0O O 0 1

Re-compute check bits
Pl P2 M3 P4 MS |V|6 M7 P8 |V|9 MlO Mll
Pp,P,1 P,1 0O OP; 0 0 1

P, P, P, P P, =f(M;, Mg, My, Mg, M) =f(1,1,0,0,1) =

3 =142 P, =f(M;, Mg, M, M, M;;) =f(1,0,0,0,1) = o
5 =1+0+4 P,=f(M;, Mg, M) =f(1,0,0) =1
6 =0+2+4 Py =f (Mg, Myy, My,) =f(0,0,1) =1
7 =1+2+4

9 =1+0+0+8
10=0+2+0+8

P
00 0 1<«—— Received check bits
11=1+2+0+8 1011

«— Re-computed check bits

0.1 0 Error Syndrom
Error Syndrom not zero, i.e, error in bit (f+4)/'5
Corrected codeword Corrected message
P, P, M3 P, Mg Mg M; Py Mg My My, 1 0 0O 0 0 0 1
O0O1 00 OO 10 0 1

Error Correction — Hamming code

The number of check bits required depends on the number of message bits.
Assume m message bits and r check bits in n-bit codewords, i.e., n=(m +r)

Each message has 1 valid codeword and n invalid codewords, that can be
generated by flipping any single bit of the valid codeword.

Each message has total (n +1) valid and invalid codewords.
There could be at most 2™ messages by m-bits.

There could be at most (n +1)* 2™ valid and invalid codewords
There could be at most 2" valid and invalid codewords by n-bits.

Therefore (n+1)*2m™<=2" replacingn=(m+r)

(m+r+1)*2m <=2(m+)
<= 2Mm*2r

(m+r+1)<=2"

Error Correction — Hamming code

(m+r+1)<=2"

7-bit messagem =7

(7+r+1)<=2"

r=1, 2, 3 do not satisfy the above inequality
r=4,i.e., 4 check bits and (11, 7) Hamming Code

Error Detection — Parity

Parity bit is added as the modulo 2 sum of data bits
— Equivalent to XOR; this is even parity
— Ex: 1110000 - 1110000 1, sum is 1
— Detection checks if the sum is wrong (an error)

Simple way to detect an odd number of errors
— Ex: 1 error, 1110010 1; detected, sum O is wrong
— Ex: 3 errors, 1101100 1; detected sum O is wrong
— Ex: 2 errors, 1110110 ; not detected, sum 1 is right!
— Error can also be in the parity bit itself
— Random errors are detected with probability %5

Error Detection — Parity

Interleaving of N parity bits detects burst errorsup to N

— Each parity sum is made over non-adjacent bits

— An even burst of up to N errors will not cause it to fail

= =0 =5 ~+~0 Z

— Transmit

1001110
1100101
1110100
1110111
1101111
1110010
1101011
AAAAAA,

1011110
;’—J
Parity bits

order

—_—
Channel

N
c
I
w
0
r
K

1001110
1100011
107100
1110111
1101111
1110010
1101011
SAR442;

1001110

0011110

«— Burst
error

Parity bits received

Parity errors
1000000

Parity bits recomputed

Syndrome, not zero
Burst rrror detected

Error Detection — Checksums

Checksum treats data as N-bit words and adds N check bits
that are the modulo 2N sum of the words

— Ex: Internet 16-bit 1s complement checksum

Properties:
— Improved error detection over parity bits
— Detects bursts up to N errors

— Detects random errors with probability (1 — zin)

Error Detection — Checksums

IP Header Checksum Computation by Sender

20 Bytes IP Header content without checksum

4500 058c cadd 4000 ef06 0000 825f 808c 80d0 0297

4500
+058c¢
+cadd
+4000
+ef06
+0000
+825f
+808c
+80d0
+0297
3cacl
+3
cac4d

One’s complement of cac4d is 353b
20 Bytes IP Header content sent with checksum
4500 058c cadd 4000 ef06 353b 825f 808c 80d0 0297

Error Detection — Checksums

IP Header Checksum Computation by Receiver

20 Bytes IP Header content received with checksum

4500 058c cadd 4000 ef06 353b 825f 808c 80d0 0297

4500
+058c
+cadd
+4000
+ef06
+353b
+825f
+808¢
+80d0
+0297
3fffc
+3
ffff

One’s complement of ffffis 0000
No errors in the header, if recomputed checksum is zero.

Error Detection — CRCs

e Adds bits so that transmitted frame viewed as a polynomial is

e Frame: 1101011111
evenly dIYISIbIe Generator: 10 0 1 1
Start by adding

1100001 1 1 0= Quotient (thrown away)

Os to frame and 10011 /1 1701011711710 00 0= Frame with four zeros appended
1001 1§ty 1y
try dividing EEREEE R
10011 ¢ & 410 11
0000 1T & ¢+ 4
00000 ¥} 4y 111
0001 14 1 1
00000 ¢!ttt
0011111 111
00000 ¢4 ' ! |
01 111} @4
00000 |} |
T1110 0 1|
10011y 1 |
171010 |
: 100114 !
Offset by any reminder 10010 |
: 100114
to make it evenly ST b
divisible 00000

1 0 =— Remainder

Transmitted frame: 1 1 01011 1 1 1 0 0 0 =— Frame with four zeros appended

minus remainder

Error Detection — CRCs

Based on standard polynomials:
— Ex: Ethernet 32-bit CRC is defined by:

1 1 11 [0

> 7 5
T I R S

2 2
X 26

32 23, .12 6, .. 2,1
X+ +x x4+ x4+ +x +x +1

— Computed with simple shift/XOR circuits

Stronger detection than checksums:
— E.g., can detect all double bit errors
— Not vulnerable to systematic errors

Flow Control

Prevents a fast sender from out-pacing a slow receiver
— Receiver gives feedback on the data it can accept

— Rare in the Link layer as NICs run at “wire speed”
e Receiver can take data as fast as it can be sent

Flow control is a topic in both Link and Transport layers.

Elementary Data Link Protocols

— Link layer environment »
— Utopian Simplex Protocol »

— Stop-and-Wait Protocol for Error-free
channel »

— Stop-and-Wait Protocol for Noisy channel »

Link layer environment

Commonly implemented as NICs and OS
drivers: network laver (IP) is often OS

Application

«—— Computer

4— Operating System
Network
' Driver
Link
— Link Network Interface

________ _— Card(NIC)

~— Cable (medium)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Link layer environment

* Link layer protocol implementations use library definitions
— See code (protocol.h)for more details

#define MAX PKT 1024
typedef unsigned int seq_nr;
typedef struct {

unsigned char data[MAX PKT];

} packet;

typedef enum {data, ack, nak} frame kind;

Link layer environment

* Link layer protocol implementations use library definitions
— See code (protocol.h)for more details

typedef enum {

typedef struct { :
, . frame_arrival,
frame_kind kind;
ced nrseq: CKsum_err,
q- g timeout,
seq_nr ack;
T network_layer_ready,
packet info; .
ack timeout
} frame; -

} event_type;

Link layer environment

* Link layer protocol implementations use library functions

— See code (protocol.h) for more details

Group Library Function Description
from_network_layer(&packet) Take a packet from network layer to send

Network | to_network_layer(&packet) Deliver a received packet to network layer

layer enable_network_layer() Let network cause “ready” events
disable_network_layer() Prevent network “ready” events

Physical | from_physical_layer(&frame) Get an incoming frame from physical layer

layer to_physical_layer(&frame) Pass an outgoing frame to physical layer
wait_for_event(&event) Wait for a packet / frame / timer event
start_timer(seqg_nr) Start a countdown timer running

Events & . . :

timers stop_timer(seq_nr) Stop a countdown timer from running

start_ack_timer()

stop_ack_timer()

Start the ACK countdown timer

Stop the ACK countdown timer

Utopian Simplex Protocol

An optimistic protocol (p1) to get us started
— Assumes no errors, and receiver as fast as sender

— Considers one-way data transfer

void sender1(void) void receiver1(void)
{ {
frame s; framer;
packet buffer; event type event;
while (true) { while (true) {
from network layer(&buffer); wait for event(&event);
s.info = buffer; from physical layer(&r);
to physical layer(&s); to network layer(&r.info);
} }
} }
Sender loops blasting frames Receiver loops eating frames

— That’s it, no error or flow control ...

Stop-and-Wait — Error-free channel

Protocol (p2) ensures sender can’t outpace receiver:
— Receiver returns a dummy frame (ack) when ready

— Only one frame out at a time — called stop-and-wait
— We added flow control!

void sender2(void) void receiver2(void)

{ {
frame s; framer, s;
packet buffer; event type event;
event type event; while (true) {
wait for event(&event);
while (true) { from physical layer(&r);
from network layer(&buffer); to network layer(&r.info);
s.info = buffer; to physical layer(&s);
to physical layer(&s); }
wait for event(&event); }
}
¥
Sender waits to for ack after Receiver sends ack after passing

passing frame to physical layer frame to network layer

Stop-and-Wait — Noisy channel

ARQ (Automatic Repeat reQuest) adds error control
— Receiver acks frames that are correctly delivered
— Sender sets timer and resends frame if no ack)

For correctness, frames and acks must be numbered

— Else receiver can’t tell retransmission (due to lost ack
or early timer) from new frame

— For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop-and-Wait — Noisy channel

void sender3(void) {
seq nr next frame to send;

Sender loop (p3): et buffer
event type event;

next frame to send = 0;
from network layer(&buffer);
while (true) {

s.info = buffer;

s.seq = next frame to send;

Send frame (or retransmission) to physical layer(&s);
Set timer for retransmission start timer(s.seq);
Wait for ack or timeout wait for event(&event);

if (event == frame arrival) {

from physical layer(&s);
If a good ack then set up for the next if (s.ack == next frame to send) {

frame to send (else the old frame stop timer(s.ack);

will be retransmitted) from network layer(&buffer);
inc(next frame to send);

Stop-and-Wait — Noisy channel

void receiver3(void)
i . {
Recelver IOOp (p3) seq nr frame expected;
framer, s;
event type event;

frame expected = 0;
while (true) {
wait for event(&event);

Wait for a frame if (event == frame arrival) {

from physical layer(&r);
If it’s new then take if (r.seq == frame expected) {
it and advance to network layer(&r.info);
expected frame inc(frame expected);

}

s.ack = 1 — frame expected;
to physical layer(&s);

Ack current frame

Sliding Window Protocols

— Sliding Window concept »
— One-bit Sliding Window »
— Go-Back-N »

— Selective Repeat »

Sliding Window concept

* Sender maintains window of frames it can send
— Needs to buffer them for possible retransmission
— Window advances with next acknowledgements
* Receiver maintains window of frames it can receive
— Needs to keep buffer space for arrivals

— Window advances with in-order arrivals

Japuas

SEVNEREN]

Sliding Window concept

Sequence number 3-bit, Window size is 1

next_seq =0

7 0 7 0
6 1 6 1
5 2 5 2
4 3 4 3

After receiving
acknowledgement
for frame with seq 0

w <)}
= ~
w o
N [
w)}
& ~
w o
N} [

After sending frame After sending frame

Initial with seq 0 with seq 0

expected_seq =0 expected_seq =0

expected_seq =1 expected_seq =1

7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
After receiving and After receiving and
Initial Initial acknowledging acknowledging

frame with seq 0 frame with seq 0

Japuas

J9A1929Y

Sliding Window concept

Sequence number 3-bit, Window size is 1

7 0
6 1
5 2
4 3

After sending frame
with seq 1

7 0
6 1
5 2
4 3

After receiving
acknowledgement
for frame with seq 0

6 1 6

[any

N

5 2 5

expected_seq =1 expected_seq =1
7 0 7 0
4 3 4 3

After receiving and
acknowledging
frame with seq 0

After receiving and
acknowledging
frame with seq 0

next_seq =2

7 0
6 1 6
5 2 5
4 3

After sending frame
with seq 1

~N
o
N =

4 3
After receiving
acknowledgement
for frame with seq 1

expected_seq =2

expected_seq =2

) o
A ~
w o
N .
« o
A ~
w o
Ny .

After receiving and
acknowledging
frame with seq 1

After receiving and
acknowledging
frame with seq 1

Japuas

SEVNEREN

Sliding Window concept

Sequence number 3-bit, Window size is 1

7 0 7 0 7 0
6 1 6 1 6 1 6
5 2 5 2 5 2 5
4 3 4 3 4 3

After receiving
acknowledgement
for frame with seq 1

K

4 3

After receiving
acknowledgement
for frame with seq 2

After sending frame After sending frame
with seq 2 with seq 2

expected_seq =2 expected_seq =2 expected_seq =3 expected_seq =3
7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
After receiving and After receiving and After receiving and After receiving and
acknowledging acknowledging acknowledging acknowledging

frame with seq 1 frame with seq 1 frame with seq 2 frame with seq 2

J3puss

J9A1909Y

Sliding Window concept

Sequence number 3-bit, Window size is 1

7 0 7 0
6 1 6 1
5 2 5 2
4 3 4 3

; After sending frame After receiving
After sgndlng frame with seg 3 acknowledgement
with seq 3 a for frame with seq 3

7 0
6 1 6
5 2 5
4 3

After receiving
acknowledgement
for frame with seq 2

» N
w o
N -

expected_seq =3 ‘

expected_seq =3 ‘ expected_seq =4 expected_seq =4
7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
After receiving and After receiving and After receiving and After receiving and
acknowledging acknowledging acknowledging acknowledging

frame with seq 2 frame with seq 2 frame with seq 3 frame with seq 3

Japuas

J9A1929Y

Sliding Window concept

Sequence number 3-bit, Window size is 2

next_seq =0 next_seq =1

) o
& ~
w o
N =
”)
& ~
w o
N [l

After sending frame

Initial with seq 0

expected_seq {0, 1} expected_seq {0. 1} ‘

7 0 7 0
6 1 6 1
5 2 5 2
4 3 4 3
Initial Initial

next_seq=1 next_seq =2

wn o
& ~
w o
N [
w o
~
o
N [

4 3
After receiving
acknowledgement
for frame with seq 0

After sending frame
with seq 1

expected_seq {2,3}

expected_seq {1, 2} ‘

7 0 7 0
6 1 6 1
5 2 5 2
4 3 4 3

After receiving and
acknowledging
frame with seq 1

After receiving and
acknowledging
frame with seq 0

Japuas

SEVNEREN

Sliding Window concept

Sequence number 3-bit, Window size is 2

next_seq =3

7 0
1 6 1 6
2 5 2 5
4 3

next_seq =2

~
o

N -

” o
& ~
w o
N
o

N -

4 3 4 3
. Aft . -
After receiving After sending frame er receiving After receiving
acknowledgement) acknowledgement acknowledgement
c with seq 2 - -
for frame with seq 0 for frame with seq 1 for frame with seq 2
expected_seq {2,3} expected_seq {2,3} ‘ expected_seq {3,4} expected_seq {3,4}
7 0 7 0 7 0 7 0
1 6 1 6 1 6 1
2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
After receiving and After receiving and After receiving and After receiving and
acknowledging acknowledging acknowledging acknowledging
frame with seq 1 frame with seq 1 frame with seq 2 frame with seq 2

Japuas

JOAI923Y

7 0
6 1
5 2
4 3

Sliding Window concept

Sequence number 3-bit, Window size is 2

” o
bl ~
w o

After receiving
acknowledgement
for frame with seq 2

expected_seq {3,4}

7 0
6 1
5 2
4 3
After receiving and

acknowledging
frame with seq 2

next_seq =4

1
2

After sending frame
with seq 3

‘ expected_seq {3, 4}

7 0
6 1
5 2
4 3

After receiving and
acknowledging
frame with seq 2

7 0
6 1
5 2
4 3

After sending frame
with seq 4

‘ expected_seq {4,5} ‘

7 0
6 1
5 2
4 3
After receiving and

acknowledging
frame with seq 3

6
5

next_seq=>5

e

4 3
After receiving
acknowledgement
for frame with seq 3

‘ expected_seq (5,6}

7 0
1
2
4 3

After receiving and
acknowledging
frame with seq 4

J3puas

SEVNEREN

Sliding Window concept

Sequence number 3-bit, Window size is 2

After receiving
acknowledgement
for frame with seq 3

7 0
6 1
5 2
4 3

expected_seq (5,6}

7 0
6 1
5 2
4 3
After receiving and

acknowledging
frame with seq 4

next_seq =6

6
5

N
o
N -
~ ~
w o
N -

4 3
After sending frame
with seq 5 and receiving
ackknowledgement for 4

expected_seq (5,6} ‘

7 0
6 1
5 2
4 3

After receiving and
acknowledging
frame with seq 4

next_seq =6

After sending frame

with seq 6

expected_seq {6,7} ‘

7 0
1
2
4 3

After receiving and
acknowledging
frame with seq 5

e

next_seq =7

4 3

After receiving
acknowledgement

for frame with seq 5

expected_seq {7,0}

7 0
4 3

After receiving and
acknowledging
frame with seq 6

Japuas

” o
-~ ~
w o

JOAI923Y

Sliding Window concept

Sequence number 3-bit, Window size is 3

next_seq =0

Initial

expected_seq {0, 1, 2} ‘

Initial

[y

N

7 0
6 1
5 2
4 3
After sending frame
with seq 0

‘ next_seq =2 ‘ ‘ next_seq =2 ‘

7 0 7 0 7 0
6 1 6 1 6 1
5 2 5 2 5 2
4 3 4 3 4 3

After receivin
After sending frame After sending frame Ving
acknowledgement for

with seq 1 with seq 2 frame with seq 0, 1

‘ expected_seq {0. 1, 2} ‘ ‘ expected_seq {1, 2, 3} ‘ expected_seq { 2,3,4} ‘ ‘ expected_seq { 2,3,4}
7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3
After receiving and After receiving and After receiving and
Initial acknowledging acknowledging acknowledging

frame with seq 0 frame with seq 1 frame with seq 1

Japuas

~
o
N -
w o
&~ ~
w o

JOAI923Y

Sliding Window concept

Sequence number 3-bit, Window size is 3

next_seq =3

4 3
After receiving
acknowledgement for
frame with seq 0, 1

After sending frame
with seq 3

‘ next_seq =4 ‘

‘ next_seq =5 ‘

After sending frame
with seq 4

After receiving
acknowledgement
for frame with seq

2,3

7 0 7 0 7 0
1 6 1 6 1 6 1
2 5 2 5 2 5 2
4 3 4 3 4 3

After receiving
acknowledgement
for frame with seq 4
and sending seq 5

expected_seq { 2,3,4} ‘

‘ expected_seq {3,4,5}

‘ expected_seq {,4,5,6}

‘ expected_seq {5.6.7} ‘

7 0
1
2
4 3

After receiving and
acknowledging
frame with seq 1

7 0
6 1
5 2
4 3

After receiving and
acknowledging
frame with seq 2

7 0

4 3

After receiving and
acknowledging
frame with seq 3

-

N

7 0
6 1
5 2
4 3
After receiving and

acknowledging
frame with seq 4

‘ expected_seq 6.7,0}

7 0
6 1
5 2
4 3

After receiving and
acknowledging
frame with seq 5

Sliding Window concept

Larger windows enable pipelining for efficient link use

— Stop-and-wait (w=1) is inefficient for long links

— Best window (w) depends on one-way bandwidth-delay
(BD) of the link and frame size (F).

— We want to use w, = 2BD/F+1 to ensure high link
utilization

— Otherwise, link utilization of using any other window size

(w,) is computed as (w, /w,,)

— For example, 1Mbps link with 100ms delay and 2kb frame
can use window size 101 to ensure high utilization.

— But using a window size 16 on the same link give us
16/101 = 0.158 link utilization.

Sliding Window concept

Pipelining leads to different choices for errors/buffering
— We will consider Go-Back-N and Selective Repeat

— Go-Back-N Receiver only accepts/acks frames that
arrive in order, i.e., receive window size 1 is sufficient

— Selective Repeat Receiver accepts frames anywhere in
receive window, i.e., receive window size must be
equal to send window size.

— Discards frames that follow a missing/errored frame

Go-Back-N

— Sender times out and resends all outstanding frames

- [Imeout interval——

0

\ \<r /
oy T,
F F
JAVAN
1 E D

D

h"h‘q

/!

A

A

f

\

- L

!

L

\

3

A

5

6

=

1] 1 2 3 4 5 §] 7 8 2 3 4 5 §] 7 8 9
/
NN X XX
?r:_.}; Oy ?E.:.f ?f_.u ?Eu ?E”
N
D D D D |2

8

Error

Frames discarded by data link layer

Timg —»=

]

Go-Back-N

Max window size with respect to sequence number

— With n-bit sequence numbers, sequence numbers
range is 0 to (2"-1) and max sequence number is (2"-1)

— For example, for 3-bit sequence numbers, sequence
numbers range is 0 to (23-1) or 0to 7 (0,1,2,3,4,5,6,7)
and the max sequence number is 7

Go-Back-N

Max window size with respect to sequence number

— In Go-Back-N if the sender is allowed to use the maximum
possible window size, i.e., 2" or 8 (in above scenario), it
will be allowed to send 8 frames using all the sequence
numbers, i.e., 0,1,2,3,4,5,6, and 7

— Assume receiver has received and acknowledged 8 frames
but all the acknowledgements get lost.

— Sender times out for not receiving the acknowledgments
and retransmits 8 frames successively with the sequence
numbers 0,1,2,3,4,5,6, and 7.

Go-Back-N

Max window size with respect to sequence number

— Receiver incorrectly assumes 8 new frame arrivals instead of
frame retransmissions as it is expecting a new frame with
sequence number O, then 1, and so on, i.e., the protocol fails.

— |f the sender is allowed to use one less than the maximum
possible window size, i.e., 2"-1 or 7 (in above scenario), it will
be allowed to send 7 frames using the sequence numbers, i.e.,
0,1,2,3,4,5, and 6

— If receiver has received and acknowledged 7 frames but all the
acknowledgements get lost.

Go-Back-N

Max window size with respect to sequence number

— Sender times out for not receiving the acknowledgments
and retransmits 7 frames successively with the sequence
numbers 0,1,2,3,4,5, and 6.

— Receiver will not assumes 7 new frame arrivals instead of
frame retransmissions as it is expecting a new frame with
sequence number 7 not 0 and so on, i.e., the protocol
succeeds.

— For this reason, sender window size in Go-Back-N is (2"-1)
with n-bit sequence numbers.

Japuas

SEVNEREN

Go-Back-N

Sequence number 3-bit, Window size, Sender 7 Receiver 1

Cetsesz | [Cresmss |

7 0 7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3 4 3
Initial After sending frame After sending frame After sending frame After sending frame
nitia with seq 0 with seq 1 with seq 2 with seq 3
expected_seq {0} ‘ ‘ expected_seq {0.} ‘ ‘ expected_seq {1} ‘ ‘ expected_seq { 2} ‘ ‘ expected_seq { 2}
7 0 7 0 7 0 7 0 7 0
6 1 6 1 6 1 6 1 6 1
5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3 4 3

Initial Initial Initial Initial Initial

Go-Back-N

Sequence number 3-bit, Window size, Sender 7 Receiver 1

7 0 7 0 7 0 7 0 7 0
g 6 1 6 1 6 1 6 1 6 1
g_
"]
-
5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3 4 3
After receiving After receiving
After sending frame After sending frame After sending frame acknowledgement 0 acknowledgement 1
with seq 4 with seq 5 with seq 6 and sending frame and sending frame
with seq 7 with seq 0
expected_seq {1} ‘ ‘ expected_seq {2} ‘ ‘ expected_seq {3} ‘ ‘ expected_seq {4} ‘ ‘ expected_seq {5}
7 0 7 0 7 0 7 0 7 0
o
3 6 1 6 1 6 1 6 1 6 1
o
<
[¢°]
-
5 2 5 2 5 2 5 2 5 2
4 3 4 3 4 3 4 3 4 3
After receiving and After receiving and After receiving and After receiving and After receiving and
acknowledging acknowledging acknowledging acknowledging acknowledging

frame with 0 frame with 1 frame with 2 frame with 3 frame with 4

Go-Back-N

* Tradeoff made for Go-Back-N:
— Simple strategy for receiver; needs only 1 frame

— Wastes link bandwidth for errors with large
windows; entire window is retransmitted

* Implemented as p5 (see code in book)

Selective Repeat

— Cumulative ack indicates highest in-order frame

— NAK (negative ack) causes sender retransmission of a
missing frame before a timeout resends window

7 8

9

10

'5'.:-’\
&,/ Hl-f

%))
;\I\;\f\ﬁ! ‘“‘*f h’; h*

2| |2 6 T

Error Frames buffered
by data link layer

Selective Repeat
Max window size with respect to sequence number

— In Selective Repeat if the sender is allowed to use one
less than the maximum possible window size, i.e., (2" -1)
or 7 (in above scenario) as in Go-Back-N, it will be
allowed to send 7 frames using all the sequence
numbers, i.e., 0,1,2,3,4,5,and 6

— Assume receiver has received and acknowledged 7
frames but all the acknowledgements get lost.

Selective Repeat

Max window size with respect to sequence number

— Sender times out for not receiving the acknowledgments
and retransmits 7 frames successively with the sequence
numbers 0,1,2,3,4,5, and 6.

— Receiver incorrectly assumes 6 new frame arrivals instead of
frame retransmissions as it is expecting new frames with
sequence number 7,0,1,2,3,4,5, i.e., the protocol fails.

— |If the sender is allowed to use only the half of the maximum
possible window size, i.e., 21 or 4 (in above scenario), it will
be allowed to send only 4 frames using the sequence
numbers, i.e., 0,1,2,and 3

— If receiver has received and acknowledged 4 frames but all
the acknowledgements get lost.

Selective Repeat

Max window size with respect to sequence number

— Sender times out for not receiving the acknowledgments
and retransmits 4 frames successively with the sequence
numbers 0,1,2, and 3.

— Receiver will not assumes 4 new frame arrivals instead of
frame retransmissions as it is expecting the new frames with
sequence numbers 4,5,6,and 7 not 0,1,2, and 3, i.e., the
protocol succeeds.

— For this reason, sender window size in Selective Repeat is
(2"1) with n-bit sequence numbers.

Selective Repeat

For correctness, we require:
— Sequence numbers (s) at least twice the window (w)

Error case (s=8, w=7) — too Correct (s=8, w=4) — enough
few sequence numbers sequence numbers
Sender 0123456(7 |[01234586|7 0123|4567 |0123|4567
l Originals l Retransmits l Originals l Retransmits
Receiver | 01234 5 6|7 0123455 0123|4567 0123|4567
0 1
New receive wierow overlaps New and old receive window

old — retransmits ambiguous don’t overlap — no ambiguity

Selective Repeat

Sequence number 4-bit, Window size, Sender 8 Receiver 8

15 ¢ 15 o 15 o 15 ¢
14 1 14 1 14 1 14 1
13 2 13 2 13 2 13 2
12 3 12 3 12 3 12 3
1 4 11 4 11 4 11 4
10 5 10 5 10 5 10 5
9 6 9 6 9 6
? 8 7 6 8 7 8 7 8 7

wn
]
>
Q.
)
=
» After sending frame After sending frame After sending frame
Initial with seq 0 with seq 1 with seq 2
expected_seq {0,1 2,3,4,5,6,7} \ \ expected_seq {0,12,3,4,5,6,7} \ ‘ expected_seq {0,12,3,4,5,6,7} \ \ expected_seq {0,1 2,3,4,5,6,7}
15 o 15 o 15 ¢ 15 o
14 1 14 1 14 1 14 1
2 13 2 2
?DU 13 2 13 13
Q 12 3 12 3 12 3 12 3
5 11 4 11 4 11 4 11 4
©
10 5 10 5 10 5 10 5
9 6 9 6 9 6
? 8 7 6 8 7 8 7 8 7
Initial Initial Initial

Initial

Selective Repeat

Sequence number 4-bit, Window size, Sender 8 Receiver 8

15 ¢ 15 o 15 o 15 ¢
14 1 14 1 14 1 14 1
2 2
o 13 2 13 2 13 13
§ 12 3 12 3 12 3 12 3
= 1 4 11 4 11 4 11 4
10 5 10 5 10 5 10 5
9 6 9 6 9 6
? 8 7 6 8 7 8 7 8 7
After sending frame After sending frame After sending frame After sending frame
with seq 3 with seq 4 with seq 5 with seq 6
expected_seq {0,12,34,5,67) | | expected seq (0,123,456} | | expected seq (0,123,456,7} | [expected seq (012,3,456,7)
15 ¢ 15 ¢ 15 o 15 ¢
14 1 14 1 14 1 14 1
2 13 2 2
o 13 2 13 13
2 12 3 12 3 12 3 12 3
3 11 4 11 4 11 4 11 4
10 5 10 5 10 5 10 5
9 6 9 6 9 6
d 8 7 6 8 7 8 7 8 7
Initial Initial Initial

Initial

Selective Repeat

Sequence number 4-bit, Window size, Sender 8 Receiver 8

15 ¢ 15 o 15 o 15 o
14 1 14 1 14 1 14 1
13 2 13 2 13 2 13 2
12 3 12 3 12 3 12 3
1 4 11 4 11 4 11 4
10 5 10 5 10 5 10 5
9 6 9 6 9 6
8 7 6 8 7 8 7 8 7

wv
]
>
o
(]
-
9
After sending frame After sending frame After sending frame After sending frame
with seq 7 with seq 7 with seq 7 with seq 7
expected_seq {0,1 2,3,4,5,6,7} ‘ ‘ expected_seq {1 2,3,4,5,6,7,8} ‘ ‘ expected_seq {2,3,4,5,6,7,9} ‘ ‘ expected_seq {3,4,5,6,7,8,9,10}
15 ¢ 15 ¢ 15 o 15 ¢
14 1 14 1 14 1 14 1
- 13 2 13 2 13 2 13 2
Iy
3 12 3 12 3 12 3 12 3
2
o 1 4 11 4 11 4 11 4
10 5 10 5 10 5 10 5
9 6 9 6 9 6
E 8 7 6 8 7 8 7 8 7
After receiving and After receiving and After receiving and
Initial acknowledging acknowledging acknowledging

frame with seq 0 frame with seq 1 frame with seq 2

Selective Repeat

Sequence number 4-bit, Window size, Sender 8 Receiver 8

Japuas

SEVNEREN

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After sending frame
with seq 7

next_seq =8

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving
acknowledgement 0
and sending frame
with seq 8

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving
acknowledgement 1
and sending frame
with seq 9

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving
acknowledgement 2
and sending frame
with seq 10

expected_seq

{8,9,10,11,12,13,14,15}

expected_seq
{9,10,11,12,13,14,15,0}

expected_seq
{10,11,12,13,14,15,0,1}

expected_seq
{11,12,13,14,15,0,1,2}

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 7

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 8

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 9

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 10

Selective Repeat

Sequence number 4-bit, Window size, Sender 8 Receiver 8

Japuas

JOAI923Y

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7
After sending frame
with seq 7

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7
After sending frame
with seq 7

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7
After sending frame
with seq 7

next_seq=7

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After sending frame
with seq 7

expected_seq
{4,5,6,7,8,9,10,11}

expected_seq
{5,6,7,8,9,10,11,12}

expected_seq
{6,7,9,10,11,12,13}

expected_seq
{7,8,9,10,11,12,13,14}

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 3

15 ¢
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 4

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 5

15 o
14 1
13 2
12 3
11 4
10 5
9 6
8 7

After receiving and
acknowledging
frame with seq 6

Selective Repeat

* Tradeoff made for Selective Repeat:

— More complex than Go-Back-N due to buffering at
receiver and multiple timers at sender

— More efficient use of link bandwidth as only lost
frames are resent (with low error rates)

 Implemented as p6 (see code in book)

One-Bit Sliding Window

* Transfers data in both directions with stop-and-wait
— Piggybacks acks on reverse data frames for efficiency

— Handles transmission errors, flow control, early timers

void protocold (void) {

Each node is sender seq nr next frame to send;
i seq nr frame expected;
and receiver (p4): frame r, s;

packet buffer;
event type event;

next frame to send = 0;
frame expected = 0;

from network layer(&buffer);
s.info = buffer;

s.seq = next frame to send;
s.ack = 1 — frame expected;
to physical layer(&s);

start timer(s.seq);

Prepare first frame

Launch it, and set timer

One-Bit Sliding Window

Wait for frame or timeout

If a frame with new data
then deliver it

If an ack for last send then
prepare for next data frame

(Otherwise it was a timeout)

Send next data frame or
retransmit old one; ack the
last data we received

while (true) {
wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);
if (r.seq == frame expected) {
to network layer(&r.info);
inc(frame expected);

}

if (r.ack == next frame to send){
stop timer(r.ack);
from network layer(&buffer);
inc(next frame to send);

}
}

s.info = buffer;

s.seq = next frame to send;
s.ack = 1 — frame expected;
to physical layer(&s);

start timer(s.seq);

One-Bit Sliding Window

Two scenarios show subtle interactions exist in p4:

* Simultaneous start [right] causes correct but slow operation

compared to normal [left] due to duplicate transmissions.

Asends (0, 1, AD)

s (0, 1, AD)*
do (D 0, BO)

x‘
//
= Bgets (1,0, A1)’
A gets (1, 1, ES’H*A-"""H# B sends (1, 1, B1)
A sends (0, 1, P«2}I‘---_______h B gets (0, 1, A2)"
Agets (0,0, B2)r = B sends (0, 0, B2)
A sends (1, 0, A3}“--..______ B gets (1, 0, A3)*

/ B sends (1, 1, B3)

A gets (0, O, BO)*
Asendo(’l 0 A1)

Time

B sends (0, 1, BO)

B gets (0, 1, AO)*
B sends (0, 0, BO)

A sends (0, 1, AD) 7

A gets (0, 1, BO)”

A sends (0, D AD
B gets (0, 0, AD)
B sends (1, 0, B1)

A gets (0, 0, BO)
A sends (1, D m

A gets (1,0, B1)"
Asends (1, 1, A’]

B gets (1, 0, A1)*
B sends (1, 1, EHJ

B gets (1, 1, A1)
B sends (0. ’l EIEJ

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

Normal case

Correct, but poor performance

Summary

— Connectionless services
— Framing

— Error Control

— Error-Correcting Code
— Error-Detecting Code

— Flow Control

— Data Link Layer Protocols

* Stop and Wait Protocol
* Sliding Window Protocol with Go Back N
* Sliding Window Protocol with Selective Repeat

Next

Medium Access Control Sublayer

— Channel Allocation Problem

— Multiple Access Protocols
* Pure and Slotted ALOHA
e Carrier Sense Multiple Access (CSMA)
* CSMA with Collision Detection (CSMA/CD)
* Binary Exponential Backoff Algorithm
e CSMA with Collision Avoidance (CSMA/CA)

— Ethernet and WiFi
— Repeaters, Hubs, Bridges, and Switches

