
CSCI 460
Networks and Communications

Datalink Layer

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

– Connectionless services

– Framing

– Error Control

– Error-Correcting Code

– Error-Detecting Code

– Flow Control

• Stop and Wait Protocol

• Sliding Window Protocol with Go Back N

• Sliding Window Protocol with Selective Repeat

Connectionless Services

Unacknowledged connectionless service

– Frame is sent with no connection and error recovery

– Ethernet is example

Acknowledged connectionless service

– Frame is sent with no connection but with
retransmissions if needed

– Example is 802.11

Frames

Link layer accepts packets from the network layer,
and encapsulates them into frames that it sends
using the physical layer; reception is the opposite
process

Actual data path

Virtual data path

Network

Link

Physical

Framing Methods

– Frames need to be delimited from each other by
the sender before transmitting over the physical
medium in order to facilitate the receiver to
separate them upon receptions.

– Once the frames are separated from each other
these delimiters have no other usage at the
receiver.

– Frame delimiters are not part of data link layer
protocol header.

Framing Methods

Frame delimiting methods

– Byte count »

– Flag bytes with byte stuffing »

– Flag bits with bit stuffing »

– Physical layer coding violations

• Use non-data symbol to indicate frame

Framing – Byte count

Frame begins with a count of the number of bytes in it

– Simple, but difficult to resynchronize after an error

Error
case

Expected
case

Framing – Byte stuffing

Special flag bytes delimit frames; occurrences of flags in the
data must be stuffed (escaped)

– Longer, but easy to resynchronize after error

Stuffing
examples

Frame
format

Need to escape
extra ESCAPE
bytes too!

Framing – Bit stuffing

Stuffing done at the bit level:

– Frame flag has six consecutive 1s (not shown)

– On transmit, after five 1s in the data, a 0 is added

– On receive, a 0 after five 1s is deleted

Transmitted bits
with stuffing

Data bits

Error Control

Error control repairs frames that are received in error

– Requires errors to be detected at the receiver

– Requires to acknowledge error free frames

– Typically retransmits the unacknowledged frames

– Timer protects against lost acknowledgements

Error control codes add structured redundancy to data so
errors can be either detected, or corrected.

Error Detection and Correction
Error correction codes:

– Hamming codes »

– Binary convolutional codes »

– Reed-Solomon and Low-Density Parity Check codes

• Mathematically complex, widely used in real
systems

Error detection codes:

– Parity »

– Checksums »

– Cyclic redundancy codes »

Error Bounds – Hamming distance

Code turns data of m bits into some codewords of (m+r) bits

Hamming distance is the minimum number of bit flips to turn
one valid codeword into any other valid one.

– Example with 4 codewords of 10 bits (m=2, r=8):

• 0000000000, 0000011111, 1111100000, and
1111111111

• Hamming distance is 5

Bounds for a code with distance:

– 2d+1 – can correct d errors (e.g., 2 errors above)

– d+1 – can detect d errors (e.g., 4 errors above)

Error Correction – Hamming code
Hamming code gives a simple way to add check bits and

correct up to a single bit error:

– Check bits are parity over subsets of the codeword

– Re-computing the parity sums (syndrome) gives the
position of the error to flip, or 0 if there is no error

– (11, 7) Hamming code adds 4 check bits with 7 bits
message and can correct 1 bit error either in a check
bit or in a message bit

Error Correction – Hamming code

• Check bits are placed at the power of twos positions; e.g. 1, 2, 4, and 8 in
the codeword.

• Message bits are placed at the rest of the positions; e.g. 3, 5, 6 ,7,9, 10, and
11 in the codeword..

• Codeword with check bits and message bits: P1P2M3P4M5M6M7P8M9M10M11

• Check bits are parity function over the subsets of the message bits.

1 0 0 0 0 0 17-bit message to send

Error Correction – Hamming code

• Message bit positions can be expressed as the sum of the positions of the
check bits with the least number of terms in the sum.

P1 P2 P4 P8

3 = 1 + 2
5 = 1 + 0 + 4
6 = 0 + 2 + 4
7 = 1 + 2 + 4
9 = 1 + 0 + 0 + 8
10 = 0 + 2 + 0 + 8
11 = 1 + 2 + 0 + 8

P1 = f (M3, M5, M7, M9, M11) = f (1,0,0,0,1) = 0
P2 = f (M3, M6, M7, M10, M11) = f (1,0,0,0,1) = 0
P4 = f (M5, M6, M7) = f (0,0,0) = 0
P8 = f (M9, M10, M11) = f (0,0,1) = 1

P1 P2 M3 P4 M5 M6 M7 P8 M9 M10 M11

P1 P2 1 P4 0 0 0 P8 0 0 1

P1 P2 M3 P4 M5 M6 M7 P8 M9 M10 M11

0 0 1 0 0 0 0 1 0 0 1

Codeword sent

1 0 0 0 0 0 1Message to send

Error Correction – Hamming code

P1 P2 P4 P8

3 = 1 + 2
5 = 1 + 0 + 4
6 = 0 + 2 + 4
7 = 1 + 2 + 4
9 = 1 + 0 + 0 + 8
10 = 0 + 2 + 0 + 8
11 = 1 + 2 + 0 + 8

P1 = f (M3, M5, M7, M9, M11) = f (1,1,0,0,1) = 1
P2 = f (M3, M6, M7, M10, M11) = f (1,0,0,0,1) = 0
P4 = f (M5, M6, M7) = f (1,0,0) = 1
P8 = f (M9, M10, M11) = f (0,0,1) = 1

P1 P2 M3 P4 M5 M6 M7 P8 M9 M10 M11

P1 P2 1 P4 1 0 0 P8 0 0 1

P1 P2 P4 P8

0 0 0 1
1 0 1 1

Error Syndrom

P1 P2 M3 P4 M5 M6 M7 P8 M9 M10 M11

0 0 1 0 1 0 0 1 0 0 1

Code word received

Re-compute check bits

Received check bits

Re-computed check bits

1 0 1 0

Error Syndrom not zero, i.e, error in bit (1+4) = 5

P1 P2 M3 P4 M5 M6 M7 P8 M9 M10 M11

0 0 1 0 0 0 0 1 0 0 1

Corrected codeword Corrected message

1 0 0 0 0 0 1

Error Correction – Hamming code

• The number of check bits required depends on the number of message bits.

• Assume m message bits and r check bits in n-bit codewords, i.e., n = (m + r)

• Each message has 1 valid codeword and n invalid codewords, that can be
generated by flipping any single bit of the valid codeword.

• Each message has total (n +1) valid and invalid codewords.

• There could be at most 2m messages by m-bits.

• There could be at most (n +1)* 2m valid and invalid codewords

• There could be at most 2n valid and invalid codewords by n-bits.

• Therefore replacing n = (m + r)(n +1)* 2m <= 2n

(m + r +1)* 2m <= 2(m + r)

<= 2m *2r

(m + r +1) <= 2 r

Error Correction – Hamming code

(m + r +1) <= 2 r

7-bit message m = 7

(7 + r +1) <= 2 r

r = 1, 2, 3 do not satisfy the above inequality
r = 4, i.e., 4 check bits and (11, 7) Hamming Code

Error Detection – Parity

Parity bit is added as the modulo 2 sum of data bits
– Equivalent to XOR; this is even parity

– Ex: 1110000 1110000 1, sum is 1

– Detection checks if the sum is wrong (an error)

Simple way to detect an odd number of errors
– Ex: 1 error, 1110010 1; detected, sum 0 is wrong

– Ex: 3 errors, 1101100 1; detected sum 0 is wrong

– Ex: 2 errors, 1110110 1; not detected, sum 1 is right!

– Error can also be in the parity bit itself

– Random errors are detected with probability ½

Error Detection – Parity
Interleaving of N parity bits detects burst errors up to N

– Each parity sum is made over non-adjacent bits

– An even burst of up to N errors will not cause it to fail

1000000 Parity bits recomputed

Parity bits received

0011110 Syndrome, not zero
Burst rrror detected

Error Detection – Checksums

Error Detection – Checksums

IP Header Checksum Computation by Sender
20 Bytes IP Header content without checksum

4500 058c cadd 4000 ef06 0000 825f 808c 80d0 0297
4500

+058c
+cadd
+4000
+ef06
+0000
+825f
+808c
+80d0
+0297
3cac1

+3
cac4

One’s complement of cac4 is 353b

20 Bytes IP Header content sent with checksum

4500 058c cadd 4000 ef06 353b 825f 808c 80d0 0297

Error Detection – Checksums

IP Header Checksum Computation by Receiver
20 Bytes IP Header content received with checksum

4500 058c cadd 4000 ef06 353b 825f 808c 80d0 0297
4500

+058c
+cadd
+4000
+ef06
+353b
+825f
+808c
+80d0
+0297

3fffc
+3
ffff

One’s complement of ffff is 0000

No errors in the header, if recomputed checksum is zero.

Error Detection – CRCs

• Adds bits so that transmitted frame viewed as a polynomial is
evenly divisible by a generator polynomial
Start by adding
0s to frame and
try dividing

Offset by any reminder
to make it evenly
divisible

Error Detection – CRCs

Based on standard polynomials:

– Ex: Ethernet 32-bit CRC is defined by:

– Computed with simple shift/XOR circuits

Stronger detection than checksums:

– E.g., can detect all double bit errors

– Not vulnerable to systematic errors

Flow Control

Prevents a fast sender from out-pacing a slow receiver

– Receiver gives feedback on the data it can accept

– Rare in the Link layer as NICs run at “wire speed”

• Receiver can take data as fast as it can be sent

Flow control is a topic in both Link and Transport layers.

Elementary Data Link Protocols

– Link layer environment »

– Utopian Simplex Protocol »

– Stop-and-Wait Protocol for Error-free
channel »

– Stop-and-Wait Protocol for Noisy channel »

Link layer environment

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Commonly implemented as NICs and OS
drivers; network layer (IP) is often OS
software

Link layer environment

• Link layer protocol implementations use library definitions

– See code (protocol.h) for more details

#define MAX_PKT 1024

typedef unsigned int seq_nr;

typedef struct {

unsigned char data[MAX_PKT];

} packet;

typedef enum {data, ack, nak} frame_kind;

Link layer environment

• Link layer protocol implementations use library definitions

– See code (protocol.h) for more details

typedef struct {
frame_kind kind;
seq_nr seq;
seq_nr ack;
packet info;

} frame;

typedef enum {
frame_arrival,
CKsum_err,
timeout,
network_layer_ready,
ack_timeout

} event_type;

Link layer environment
• Link layer protocol implementations use library functions

– See code (protocol.h) for more details

Group Library Function Description

Network

layer

from_network_layer(&packet)

to_network_layer(&packet)

enable_network_layer()

disable_network_layer()

Take a packet from network layer to send

Deliver a received packet to network layer

Let network cause “ready” events

Prevent network “ready” events

Physical

layer

from_physical_layer(&frame)

to_physical_layer(&frame)

Get an incoming frame from physical layer

Pass an outgoing frame to physical layer

Events &

timers

wait_for_event(&event)

start_timer(seq_nr)

stop_timer(seq_nr)

start_ack_timer()

stop_ack_timer()

Wait for a packet / frame / timer event

Start a countdown timer running

Stop a countdown timer from running

Start the ACK countdown timer

Stop the ACK countdown timer

Utopian Simplex Protocol
An optimistic protocol (p1) to get us started

– Assumes no errors, and receiver as fast as sender

– Considers one-way data transfer

– That’s it, no error or flow control …

Sender loops blasting frames Receiver loops eating frames

}

Stop-and-Wait – Error-free channel

Protocol (p2) ensures sender can’t outpace receiver:

– Receiver returns a dummy frame (ack) when ready

– Only one frame out at a time – called stop-and-wait

– We added flow control!

Sender waits to for ack after
passing frame to physical layer

Receiver sends ack after passing
frame to network layer

Stop-and-Wait – Noisy channel

ARQ (Automatic Repeat reQuest) adds error control

– Receiver acks frames that are correctly delivered

– Sender sets timer and resends frame if no ack)

For correctness, frames and acks must be numbered

– Else receiver can’t tell retransmission (due to lost ack
or early timer) from new frame

– For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop-and-Wait – Noisy channel

Sender loop (p3):

Send frame (or retransmission)
Set timer for retransmission
Wait for ack or timeout

If a good ack then set up for the next
frame to send (else the old frame
will be retransmitted)

{

Stop-and-Wait – Noisy channel

Receiver loop (p3):

Wait for a frame

If it’s new then take
it and advance
expected frame

Ack current frame

Sliding Window Protocols

– Sliding Window concept »

– One-bit Sliding Window »

– Go-Back-N »

– Selective Repeat »

Sliding Window concept

• Sender maintains window of frames it can send

– Needs to buffer them for possible retransmission

– Window advances with next acknowledgements

• Receiver maintains window of frames it can receive

– Needs to keep buffer space for arrivals

– Window advances with in-order arrivals

Sliding Window concept

Sequence number 3-bit, Window size is 1

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq = 0

Se
n

d
e

r
R

e
ceiver

Initial

Initial

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq = 0

After sending frame
with seq 0

Initial

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq = 1

After sending frame
with seq 0

After receiving and
acknowledging

frame with seq 0

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq = 1

After receiving
acknowledgement

for frame with seq 0

After receiving and
acknowledging

frame with seq 0

Sliding Window concept

0

1

2

34

5

6

7

next_seq = 1

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 1

After sending frame
with seq 1

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq = 2

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

next_seq = 2

After receiving
acknowledgement

for frame with seq 1

After receiving
acknowledgement

for frame with seq 0

0

1

2

34

5

6

7

expected_seq = 1

After receiving and
acknowledging

frame with seq 0

0

1

2

34

5

6

7

expected_seq = 1

After receiving and
acknowledging

frame with seq 0

After sending frame
with seq 1

0

1

2

34

5

6

7

expected_seq = 2

After receiving and
acknowledging

frame with seq 1

Sequence number 3-bit, Window size is 1

Sliding Window concept
Sequence number 3-bit, Window size is 1

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 2

After sending frame
with seq 2

0

1

2

34

5

6

7

expected_seq = 3

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement

for frame with seq 2

0

1

2

34

5

6

7

next_seq = 2

After receiving
acknowledgement

for frame with seq 1

0

1

2

34

5

6

7

expected_seq = 2

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

expected_seq = 2

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

next_seq = 2

After sending frame
with seq 2

0

1

2

34

5

6

7

expected_seq = 3

After receiving and
acknowledging

frame with seq 2

Sliding Window concept
Sequence number 3-bit, Window size is 1

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 3

After sending frame
with seq 3

0

1

2

34

5

6

7

expected_seq = 4

After receiving and
acknowledging

frame with seq 3

0

1

2

34

5

6

7

next_seq = 4

After receiving
acknowledgement

for frame with seq 3

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement

for frame with seq 2

0

1

2

34

5

6

7

expected_seq = 3

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

expected_seq = 3

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

next_seq = 3

After sending frame
with seq 3

0

1

2

34

5

6

7

expected_seq = 4

After receiving and
acknowledging

frame with seq 3

Sliding Window concept
Sequence number 3-bit, Window size is 2

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq {0, 1}

Se
n

d
e

r
R

e
ceiver

Initial

Initial

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq {0. 1}

After sending frame
with seq 0

Initial

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq {1, 2}

After sending frame
with seq 1

After receiving and
acknowledging

frame with seq 0

0

1

2

34

5

6

7

next_seq = 2

0

1

2

34

5

6

7

expected_seq {2,3}

After receiving
acknowledgement

for frame with seq 0

After receiving and
acknowledging

frame with seq 1

Sliding Window concept
Sequence number 3-bit, Window size is 2

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 2

After sending frame
with seq 2

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement

for frame with seq 1

0

1

2

34

5

6

7

expected_seq {3,4}

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

next_seq = 2

0

1

2

34

5

6

7

expected_seq {2,3}

After receiving
acknowledgement

for frame with seq 0

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

expected_seq {2,3}

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement

for frame with seq 2

0

1

2

34

5

6

7

expected_seq {3,4}

After receiving and
acknowledging

frame with seq 2

Sliding Window concept
Sequence number 3-bit, Window size is 2

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 4

After sending frame
with seq 3

0

1

2

34

5

6

7

expected_seq {4,5}

After receiving and
acknowledging

frame with seq 3

0

1

2

34

5

6

7

next_seq = 5

After receiving
acknowledgement

for frame with seq 3

0

1

2

34

5

6

7

expected_seq {3, 4}

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

next_seq = 4

After sending frame
with seq 4

0

1

2

34

5

6

7

expected_seq (5,6}

After receiving and
acknowledging

frame with seq 4

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement

for frame with seq 2

0

1

2

34

5

6

7

expected_seq {3,4}

After receiving and
acknowledging

frame with seq 2

Sliding Window concept
Sequence number 3-bit, Window size is 2

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 6

After sending frame
with seq 5 and receiving
ackknowledgement for 4

0

1

2

34

5

6

7

expected_seq {6,7}

After receiving and
acknowledging

frame with seq 5

0

1

2

34

5

6

7

next_seq = 7

After receiving
acknowledgement

for frame with seq 5

0

1

2

34

5

6

7

next_seq = 6

After sending frame
with seq 6

0

1

2

34

5

6

7

expected_seq {7,0}

After receiving and
acknowledging

frame with seq 6

0

1

2

34

5

6

7

next_seq = 5

After receiving
acknowledgement

for frame with seq 3

0

1

2

34

5

6

7

expected_seq (5,6}

After receiving and
acknowledging

frame with seq 4

0

1

2

34

5

6

7

expected_seq (5,6}

After receiving and
acknowledging

frame with seq 4

Sliding Window concept
Sequence number 3-bit, Window size is 3

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq {0, 1, 2}

Se
n

d
e

r
R

e
ceiver

Initial

Initial

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq {0. 1, 2}

After sending frame
with seq 0

Initial

0

1

2

34

5

6

7

next_seq = 2

0

1

2

34

5

6

7

expected_seq {1, 2, 3}

After sending frame
with seq 1

After receiving and
acknowledging

frame with seq 0

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement for

frame with seq 0, 1

0

1

2

34

5

6

7

next_seq = 2

0

1

2

34

5

6

7

expected_seq { 2,3,4}

After sending frame
with seq 2

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

expected_seq { 2,3,4}

After receiving and
acknowledging

frame with seq 1

Sliding Window concept
Sequence number 3-bit, Window size is 3

Se
n

d
e

r
R

e
ceiver

0

1

2

34

5

6

7

next_seq = 4

After sending frame
with seq 3

0

1

2

34

5

6

7

next_seq = 5

After receiving
acknowledgement
for frame with seq

2, 3

0

1

2

34

5

6

7

expected_seq {3,4,5}

After receiving and
acknowledging

frame with seq 2

0

1

2

34

5

6

7

expected_seq {5.6.7}

After receiving and
acknowledging

frame with seq 4

0

1

2

34

5

6

7

next_seq = 3

After receiving
acknowledgement for

frame with seq 0, 1

0

1

2

34

5

6

7

expected_seq { 2,3,4}

After receiving and
acknowledging

frame with seq 1

0

1

2

34

5

6

7

next_seq = 4

After sending frame
with seq 4

0

1

2

34

5

6

7

expected_seq {,4,5,6}

After receiving and
acknowledging

frame with seq 3

0

1

2

34

5

6

7

next_seq = 6

After receiving
acknowledgement

for frame with seq 4
and sending seq 5

0

1

2

34

5

6

7

expected_seq 6.7,0}

After receiving and
acknowledging

frame with seq 5

Sliding Window concept

Larger windows enable pipelining for efficient link use

– Stop-and-wait (w=1) is inefficient for long links

– Best window (w) depends on one-way bandwidth-delay
(BD) of the link and frame size (F).

– We want to use wmax= 2BD/F+1 to ensure high link
utilization

– Otherwise, link utilization of using any other window size
(wa) is computed as (wa/wmax)

– For example, 1Mbps link with 100ms delay and 2kb frame
can use window size 101 to ensure high utilization.

– But using a window size 16 on the same link give us
16/101 = 0.158 link utilization.

Sliding Window concept

Pipelining leads to different choices for errors/buffering

– We will consider Go-Back-N and Selective Repeat

– Go-Back-N Receiver only accepts/acks frames that
arrive in order, i.e., receive window size 1 is sufficient

– Selective Repeat Receiver accepts frames anywhere in
receive window, i.e., receive window size must be
equal to send window size.

Go-Back-N

– Discards frames that follow a missing/errored frame

– Sender times out and resends all outstanding frames

Go-Back-N

– With n-bit sequence numbers, sequence numbers
range is 0 to (2n-1) and max sequence number is (2n-1)

– For example, for 3-bit sequence numbers, sequence
numbers range is 0 to (23-1) or 0 to 7 (0,1,2,3,4,5,6,7)
and the max sequence number is 7

Max window size with respect to sequence number

Go-Back-N

– In Go-Back-N if the sender is allowed to use the maximum
possible window size, i.e., 2n or 8 (in above scenario), it
will be allowed to send 8 frames using all the sequence
numbers, i.e., 0,1,2,3,4,5,6, and 7

– Assume receiver has received and acknowledged 8 frames
but all the acknowledgements get lost.

– Sender times out for not receiving the acknowledgments
and retransmits 8 frames successively with the sequence
numbers 0,1,2,3,4,5,6, and 7.

Max window size with respect to sequence number

Go-Back-N

– Receiver incorrectly assumes 8 new frame arrivals instead of
frame retransmissions as it is expecting a new frame with
sequence number 0, then 1, and so on, i.e., the protocol fails.

– If the sender is allowed to use one less than the maximum
possible window size, i.e., 2n -1 or 7 (in above scenario), it will
be allowed to send 7 frames using the sequence numbers, i.e.,
0,1,2,3,4,5, and 6

– If receiver has received and acknowledged 7 frames but all the
acknowledgements get lost.

Max window size with respect to sequence number

Go-Back-N

– Sender times out for not receiving the acknowledgments
and retransmits 7 frames successively with the sequence
numbers 0,1,2,3,4,5, and 6.

– Receiver will not assumes 7 new frame arrivals instead of
frame retransmissions as it is expecting a new frame with
sequence number 7 not 0 and so on, i.e., the protocol
succeeds.

– For this reason, sender window size in Go-Back-N is (2n -1)
with n-bit sequence numbers.

Max window size with respect to sequence number

Go-Back-N

Sequence number 3-bit, Window size, Sender 7 Receiver 1

0

1

2

34

5

6

7

next_seq = 0

0

1

2

34

5

6

7

expected_seq {0}

Se
n

d
e

r
R

e
ceiver

Initial

Initial

0

1

2

34

5

6

7

next_seq = 1

0

1

2

34

5

6

7

expected_seq {0.}

After sending frame
with seq 0

Initial

0

1

2

34

5

6

7

next_seq = 2

0

1

2

34

5

6

7

expected_seq {1}

After sending frame
with seq 1

0

1

2

34

5

6

7

next_seq = 4

After sending frame
with seq 3

0

1

2

34

5

6

7

next_seq = 3

0

1

2

34

5

6

7

expected_seq { 2}

After sending frame
with seq 2

0

1

2

34

5

6

7

expected_seq { 2}

Initial Initial Initial

Go-Back-N

Sequence number 3-bit, Window size, Sender 7 Receiver 1

Se
n

d
e

r

0

1

2

34

5

6

7

next_seq = 6

After sending frame
with seq 5

0

1

2

34

5

6

7

next_seq = 5

After sending frame
with seq 4

0

1

2

34

5

6

7

next_seq = 6

After sending frame
with seq 6

0

1

2

34

5

6

7

expected_seq {1}

R
e

ceiver

After receiving and
acknowledging
frame with 0

0

1

2

34

5

6

7

expected_seq {2}

0

1

2

34

5

6

7

expected_seq {3}

0

1

2

34

5

6

7

expected_seq {4}

0

1

2

34

5

6

7

expected_seq {5}

0

1

2

34

5

6

7

next_seq = 7

After receiving
acknowledgement 0
and sending frame

with seq 7

0

1

2

34

5

6

7

next_seq = 0

After receiving
acknowledgement 1
and sending frame

with seq 0

After receiving and
acknowledging
frame with 1

After receiving and
acknowledging
frame with 2

After receiving and
acknowledging
frame with 3

After receiving and
acknowledging
frame with 4

Go-Back-N

• Tradeoff made for Go-Back-N:

– Simple strategy for receiver; needs only 1 frame

– Wastes link bandwidth for errors with large
windows; entire window is retransmitted

• Implemented as p5 (see code in book)

Selective Repeat

– Cumulative ack indicates highest in-order frame

– NAK (negative ack) causes sender retransmission of a
missing frame before a timeout resends window

Selective Repeat

– In Selective Repeat if the sender is allowed to use one
less than the maximum possible window size, i.e., (2n -1)
or 7 (in above scenario) as in Go-Back-N, it will be
allowed to send 7 frames using all the sequence
numbers, i.e., 0,1,2,3,4,5,and 6

– Assume receiver has received and acknowledged 7
frames but all the acknowledgements get lost.

Max window size with respect to sequence number

Selective Repeat

– Sender times out for not receiving the acknowledgments
and retransmits 7 frames successively with the sequence
numbers 0,1,2,3,4,5, and 6.

– Receiver incorrectly assumes 6 new frame arrivals instead of
frame retransmissions as it is expecting new frames with
sequence number 7,0,1,2,3,4,5, i.e., the protocol fails.

– If the sender is allowed to use only the half of the maximum
possible window size, i.e., 2n-1 or 4 (in above scenario), it will
be allowed to send only 4 frames using the sequence
numbers, i.e., 0,1,2,and 3

– If receiver has received and acknowledged 4 frames but all
the acknowledgements get lost.

Max window size with respect to sequence number

Selective Repeat

– Sender times out for not receiving the acknowledgments
and retransmits 4 frames successively with the sequence
numbers 0,1,2, and 3.

– Receiver will not assumes 4 new frame arrivals instead of
frame retransmissions as it is expecting the new frames with
sequence numbers 4,5,6,and 7 not 0,1,2, and 3, i.e., the
protocol succeeds.

– For this reason, sender window size in Selective Repeat is
(2n-1) with n-bit sequence numbers.

Max window size with respect to sequence number

Selective Repeat

For correctness, we require:

– Sequence numbers (s) at least twice the window (w)

Originals OriginalsRetransmits Retransmits

Error case (s=8, w=7) – too
few sequence numbers

Correct (s=8, w=4) – enough
sequence numbers

New receive window overlaps
old – retransmits ambiguous

New and old receive window
don’t overlap – no ambiguity

Selective Repeat
Sequence number 4-bit, Window size, Sender 8 Receiver 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 0

Initial

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 1

After sending frame
with seq 0

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 2

After sending frame
with seq 1

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 3

After sending frame
with seq 2

expected_seq {0,1 2,3,4,5,6,7}

Initial

Se
n

d
e

r
R

e
ceiver

Selective Repeat
Sequence number 4-bit, Window size, Sender 8 Receiver 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 4

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 5

After sending frame
with seq 4

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 6

After sending frame
with seq 5

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 6

expected_seq {0,1 2,3,4,5,6,7}

Initial

After sending frame
with seq 3

Se
n

d
e

r
R

e
ceiver

Selective Repeat
Sequence number 4-bit, Window size, Sender 8 Receiver 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

expected_seq {0,1 2,3,4,5,6,7}

Initial

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq {1 2,3,4,5,6,7,8}

After receiving and
acknowledging

frame with seq 0

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq {2,3,4,5,6,7,9}

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq {3,4,5,6,7,8,9,10}

After sending frame
with seq 7

After receiving and
acknowledging

frame with seq 1

After receiving and
acknowledging

frame with seq 2

Se
n

d
e

r
R

e
ceiver

Selective Repeat
Sequence number 4-bit, Window size, Sender 8 Receiver 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 8

After receiving
acknowledgement 0
and sending frame

with seq 8

expected_seq
{9,10,11,12,13,14,15,0}

After receiving and
acknowledging

frame with seq 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

expected_seq
{10,11,12,13,14,15,0,1}

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

expected_seq
{11,12,13,14,15,0,1,2}

After sending frame
with seq 7

After receiving and
acknowledging

frame with seq 9

After receiving and
acknowledging

frame with seq 10

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

expected_seq
{8,9,10,11,12,13,14,15}

After receiving and
acknowledging

frame with seq 7

After receiving
acknowledgement 1
and sending frame

with seq 9

After receiving
acknowledgement 2
and sending frame

with seq 10

Se
n

d
e

r
R

e
ceiver

Selective Repeat
Sequence number 4-bit, Window size, Sender 8 Receiver 8

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq
{5,6,7,8,9,10,11,12}

After receiving and
acknowledging

frame with seq 4

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq
{6,7,9,10,11,12,13}

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

next_seq = 7

After sending frame
with seq 7

expected_seq
{7,8,9,10,11,12,13,14}

After sending frame
with seq 7

After receiving and
acknowledging

frame with seq 5

After receiving and
acknowledging

frame with seq 6

0
1

2

3

4

5
6

78
9

10

11

13
14

12

15

expected_seq
{4,5,6,7,8,9,10,11}

After receiving and
acknowledging

frame with seq 3

Se
n

d
e

r
R

e
ceiver

Selective Repeat

• Tradeoff made for Selective Repeat:

– More complex than Go-Back-N due to buffering at
receiver and multiple timers at sender

– More efficient use of link bandwidth as only lost
frames are resent (with low error rates)

• Implemented as p6 (see code in book)

One-Bit Sliding Window

• Transfers data in both directions with stop-and-wait

– Piggybacks acks on reverse data frames for efficiency

– Handles transmission errors, flow control, early timers

. . .

{

Each node is sender

and receiver (p4):

Prepare first frame

Launch it, and set timer

One-Bit Sliding Window
. . .

If a frame with new data
then deliver it

Wait for frame or timeout

(Otherwise it was a timeout)

If an ack for last send then
prepare for next data frame

Send next data frame or
retransmit old one; ack the
last data we received

• Two scenarios show subtle interactions exist in p4:

• Simultaneous start [right] causes correct but slow operation
compared to normal [left] due to duplicate transmissions.

Time

Normal case Correct, but poor performance

One-Bit Sliding Window

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

Summary
– Connectionless services

– Framing

– Error Control

– Error-Correcting Code

– Error-Detecting Code

– Flow Control

– Data Link Layer Protocols

• Stop and Wait Protocol

• Sliding Window Protocol with Go Back N

• Sliding Window Protocol with Selective Repeat

Next

– Channel Allocation Problem

– Multiple Access Protocols

• Pure and Slotted ALOHA

• Carrier Sense Multiple Access (CSMA)

• CSMA with Collision Detection (CSMA/CD)

• Binary Exponential Backoff Algorithm

• CSMA with Collision Avoidance (CSMA/CA)

– Ethernet and WiFi

– Repeaters, Hubs, Bridges, and Switches

Medium Access Control Sublayer

