
2

Under The Hood: The System Call

In this note, we’ll peak under the hood of one simple and neat
OS called xv6 [CK+08]. The xv6 kernel is a port of an old UNIX

version 6 from PDP-11 (the machine it was originally built to
run on) to a modern system, Intel x86, and the idea to make it a
source of study stems from Lions’ famous commentary on Unix
SV6 [L76]. The xv6 kernel does is compact and concise, and thus
represents a great way to understand many of the fundamentals
that underly operating systems without the code deluge that of-
ten accompanies such a pursuit.

ASIDE: UNDER THE HOOD

In these “under the hood” sections, we’ll be looking at what
goes on inside an operating system. The actual code and all
of that jazz. Hopefully it will help deconstruct the mythic beast
that is the OS and transform it in your mind into what it actually
is: just software.

We’ll specifically trace what happens in the code in order to
understand a system call. System calls allow the operating sys-
tem to run code on the behalf of user requests but in a protected
manner, both by jumping into the kernel (in a very specific and
restricted way) and also by simultaneously raising the privilege

1

2 UNDER THE HOOD: THE SYSTEM CALL

level of the hardware, so that the OS can perform certain re-
stricted operations.

2.1 System Call Overview

Before delving into the details, we first provide an overview
of the entire process. The problem we are trying to solve is sim-
ple: how can we build a system such that the OS is allowed
access to all of the resources of the machine (including access
to special instructions, to physical memory, and to any devices)
while user programs are only able to do so in a restricted man-
ner?

unning on a machine, with access to all resources. A typical user program, in contrast, should have reduced

The way we achieve this goal is with hardware support. The
hardware must explicitly have a notion of privilege built into it,
and thus be able to distinguish when the OS is running versus
typical user applications.

XXX – not done – XXX – should do as more general discus-
sion of CONCEPTS behind a system call?

2.2 Getting Into The Kernel: A Trap

The first step in a system call begins at user-level with an
application. The application that wishes to make a system call
(such as read()) calls the relevant library routine. However, all
the library version of the system call does is to place the proper
arguments in relevant registers and issue some kind of trap in-

struction, as we see in an expanded version of usys.S 1 (Figure
2.2).

1Some macros are used to define these functions so as to make life easier for
the kernel developer; the example shows the macro expanded to the actual assem-
bly code

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 3

User Mode

Kernel Mode

Hardware 2

1

3

4

5 6 7

8

9

Boot Normal Execution

Time

Figure 2.1: System Call Overview

.globl read;

read:

movl $6, %eax;

int $48;

ret

Figure 2.2: File: usys.S

Here we can see that the read() library function actually
doesn’t do much at all; it moves the value 5 into the register
%eax and issues the x86 trap instruction which is confusingly

called int (short for “interrupt”2). The value in %eax is going to
be used by the kernel to vector to the right system call, i.e., it de-
termines which system call is being invoked. The int instruc-
tion takes one argument (here it is 48), which tells the hardware
which trap type this is. In xv6, trap 48 is used to handle system
calls. Any other arguments which are passed to the system call
are passed on the stack.

2The x86 architecture has been called an architecture only a mother could love
by Dave Patterson, a well-known computer architect. Among other things Intel
got wrong, the names they use for well-known concepts tend to be slightly strange.
Using “int” for what is a trap is just one such example.

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

4 UNDER THE HOOD: THE SYSTEM CALL

2.3 Kernel Side: Trap Tables

Once the int instruction is executed, the hardware takes
over and does a bunch of work on behalf of the caller. One im-
portant thing the hardware does is to raise the privilege level of
the CPU to kernel mode; on x86 this is usually means moving
from a CPL (Current Privilege Level) of 3 (the level at which
user applications run) to CPL 0 (in which the kernel runs). Yes,
there are a couple of in-between privilege levels, but most sys-
tems do not make use of these.

The second important thing the hardware does is to transfer
control to the trap vectors of the system. To enable the hardware
to know what code to run when a particular trap occurs, the OS,
when booting, must make sure to inform the hardware of the
location of the code to run when such traps take place. This is
done in main.c as follows:

// FILE: main.c

int

main(void)

{

...

tvinit(); // trap vectors initialized here

...

}

The routine tvinit() is the relevant one here. Peeking in-
side of it, we see:

// FILE: trap.c

void tvinit(void)

{

int i;

for(i = 0; i < 256; i++)

SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);

// this is the line we care about...

SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);

initlock(&tickslock, "time");

}

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 5

The SETGATE() macro is the relevant code here. It is used
to set the idt array to point to the proper code to execute when
various traps and interrupts occur. For system calls, the single
SETGATE() call (which comes after the loop) is the one we’re
interested in. Here is what the macro does (as well as the gate
descriptor it sets):
// FILE: mmu.h

// Gate descriptors for interrupts and traps

struct gatedesc {

uint off_15_0 : 16; // low 16 bits of offset in segment

uint cs : 16; // code segment selector

uint args : 5; // # args, 0 for interrupt/trap gates

uint rsv1 : 3; // reserved(should be zero I guess)

uint type : 4; // type(STS_{TG,IG32,TG32})

uint s : 1; // must be 0 (system)

uint dpl : 2; // descriptor(meaning new) privilege level

uint p : 1; // Present

uint off_31_16 : 16; // high bits of offset in segment

};

// Set up a normal interrupt/trap gate descriptor.

// - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.

// interrupt gate clears FL_IF, trap gate leaves FL_IF alone

// - sel: Code segment selector for interrupt/trap handler

// - off: Offset in code segment for interrupt/trap handler

// - dpl: Descriptor Privilege Level -

// the privilege level required for software to invoke

// this interrupt/trap gate explicitly using an int instruction.

#define SETGATE(gate, istrap, sel, off, d) \

{ \

(gate).off_15_0 = (uint) (off) & 0xffff; \

(gate).cs = (sel); \

(gate).args = 0; \

(gate).rsv1 = 0; \

(gate).type = (istrap) ? STS_TG32 : STS_IG32; \

(gate).s = 0; \

(gate).dpl = (d); \

(gate).p = 1; \

(gate).off_31_16 = (uint) (off) >> 16; \

}

As you can see from the code, all the SETGATE() macros
does is set the values of an in-memory data structure. Most im-
portant is the off parameter, which tells the hardware where

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

6 UNDER THE HOOD: THE SYSTEM CALL

the trap handling code is. In the initialization code, the value
vectors[T SYSCALL] is passed in; thus, whatever the vectors
array points to will be the code to run when a system call takes
place. There are other details (which are important too); consult
an x86 hardware architecture manual [I09] for more informa-
tion.

Note, however, that we still have not informed the hardware
of this information, but rather filled a data structure. The actual
hardware informing occurs a little later in the boot sequence; in
xv6, it happens in the routine mpmain() in the file main.c:

static void

mpmain(void)

{

idtinit();

...

void

idtinit(void)

{

lidt(idt, sizeof(idt));

}

static inline void

lidt(struct gatedesc *p, int size)

{

volatile ushort pd[3];

pd[0] = size-1;

pd[1] = (uint)p;

pd[2] = (uint)p >> 16;

asm volatile("lidt (%0)" : : "r" (pd));

}

Here, you can see how (eventually) a single assembly in-
struction is called to tell the hardware where to find the inter-
rupt descriptor table (IDT) in memory. Note this is done in
mpmain() as each processor in the system must have such a
table (they all use the same one of course). Finally, after execut-
ing this instruction (which is only possible when the kernel is

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 7

running, in privileged mode), we are ready to think about what
happens when a user application invokes a system call.
struct trapframe {

// registers as pushed by pusha

uint edi;

uint esi;

uint ebp;

uint oesp; // useless & ignored

uint ebx;

uint edx;

uint ecx;

uint eax;

// rest of trap frame

ushort es;

ushort padding1;

ushort ds;

ushort padding2;

uint trapno;

// below here defined by x86 hardware

uint err;

uint eip;

ushort cs;

ushort padding3;

uint eflags;

// below here only when crossing rings, such as from user to kernel

uint esp;

ushort ss;

ushort padding4;

};

Figure 2.3: File: x86.h

2.4 From Low-level To The C Trap Handler

The OS has carefully set up its trap handlers, and thus we are
ready to see what happens on the OS side once an application
issues a system call via the int instruction. Before any code is
run, the hardware must perform a number of tasks. The first

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

8 UNDER THE HOOD: THE SYSTEM CALL

thing it does are those tasks which are difficult/impossible for
the software to do itself, including saving the current PC (IP or
EIP in Intel terminology) onto the stack, as well as a number of
other registers such as the eflags register (which contains the
current status of the CPU while the program was running), stack
pointer, and so forth. One can see what the hardware is expected
to save by looking at the trapframe structure as defined in
x86.h (Figure 2.3).

As you can see from the bottom of the trapframe structure,
some pieces of the trap frame are filled in by the hardware (up to
the err field); the rest will be saved by the OS. The first code OS
that is run is vector48() (Figure 2.4) as found in vectors.S

(which is automatically generated by vectors.pl).
.globl vector48

vector48:

pushl $48

jmp alltraps

Figure 2.4: File: vectors.S (generated by vectors.pl)

This code pushes the trap number onto the stack (filling in
the trapno field of the trap frame) and then calls alltraps()
to do most of the saving of context into the trap frame (Figure
2.5).

The code in alltraps() pushes a few more segment regis-
ters (not described here, yet) onto the stack before pushing the
remaining general purpose registers onto the trap frame via a
pushal instruction. Then, the OS changes the descriptor seg-
ment and extra segment registers so that it can access its own
(kernel) memory. Finally, the C trap handler is called.

2.5 The C Trap Handler

Once done with the low-level details of setting up the trap
frame, the low-level assembly code calls up into a generic C
trap handler called trap(), which is passed a pointer to the
trap frame. This trap handler is called upon all types of inter-

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 9

vectors.S sends all traps here.

.globl alltraps

alltraps:

Build trap frame.

pushl %ds

pushl %es

pushal

Set up data segments.

movl $SEG_KDATA_SEL, %eax

movw %ax,%ds

movw %ax,%es

Call trap(tf), where tf=%esp

pushl %esp

call trap

addl $4, %esp

Figure 2.5: File: trapasm.S

rupts and traps, and thus check the trap number field of the
trap frame (trapno) to determine what to do. The first check
is for the system call trap number (T SYSCALL, or 48 as defined
somewhat arbitrarily in traps.h), which then handles the sys-
tem call, as you see here:

// FILE: trap.c

void

trap(struct trapframe *tf)

{

if(tf->trapno == T_SYSCALL){

if(cp->killed)

exit();

cp->tf = tf;

syscall();

if(cp->killed)

exit();

return;

}

... // continues

}

The code isn’t too complicated. It checks if the current pro-

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

10 UNDER THE HOOD: THE SYSTEM CALL

cess (that made the system call) has been killed; if so, it sim-
ply exits and cleans up the process (and thus does not proceed
with the system call). It then calls syscall() to actually per-
form the system call; more details on that below. Finally, it
checks whether the process has been killed again before return-
ing. Note that we’ll follow the return path below in more detail.

2.6 Vectoring To The System Call

Once we finally get to the syscall() routine in syscall.c,
not much work is left to do (Figure 2.6). The system call number
has been passed to us in the register %eax, and now we unpack
that number from the trap frame and use it to call the appro-
priate routine as defined in the system call table syscalls[].
Pretty much all operating systems have a table similar to this
to define the various system calls they support. After carefully
checking that the system call number is in bounds, the pointed-
to routine is called to handle the call. For example, if the system
call read() was called by the user, the routine sys read()

will be invoked here. The return value, you might note, is stored
in %eax to pass back to the user.

2.7 The Return Path

The return path is pretty easy. First, the system call returns an
integer value, which the code in syscall() grabs and places
into the eax field of the trap frame. The code then returns into
trap(), which simply returns into where it was called from in
the assembly trap handler (Figure 2.7).

This return code doesn’t do too much, just making sure to
pop the relevant values off the stack to restore the context of
the running process. Finally, one more special instruction is
called: iret, or the return-from-trap instruction. This instruc-
tion is similar to a return from a procedure call, but simultane-
ously lowers the privilege level back to user mode and jumps
back to the instruction immediately following the int instruc-

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 11

static int (*syscalls[])(void) = {

[SYS_chdir] sys_chdir,

[SYS_close] sys_close,

[SYS_dup] sys_dup,

[SYS_exec] sys_exec,

[SYS_exit] sys_exit,

[SYS_fork] sys_fork,

[SYS_fstat] sys_fstat,

[SYS_getpid] sys_getpid,

[SYS_kill] sys_kill,

[SYS_link] sys_link,

[SYS_mkdir] sys_mkdir,

[SYS_mknod] sys_mknod,

[SYS_open] sys_open,

[SYS_pipe] sys_pipe,

[SYS_read] sys_read,

[SYS_sbrk] sys_sbrk,

[SYS_sleep] sys_sleep,

[SYS_unlink] sys_unlink,

[SYS_wait] sys_wait,

[SYS_write] sys_write,

};

void

syscall(void)

{

int num;

num = cp->tf->eax;

if(num >= 0 && num < NELEM(syscalls) && syscalls[num])

cp->tf->eax = syscalls[num]();

else {

cprintf("%d %s: unknown sys call %d\n",

cp->pid, cp->name, num);

cp->tf->eax = -1;

}

}

Figure 2.6: File: syscall.c

tion called to invoke the system call, restoring all the state that
has been saved into the trap frame. At this point, the user stub
for read() (as seen in Figure 2.2) is run again, which just uses

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

12 UNDER THE HOOD: THE SYSTEM CALL

Return falls through to trapret...

.globl trapret

trapret:

popal

popl %es

popl %ds

addl $0x8, %esp # trapno and errcode

iret

Figure 2.7: File: trapasm.S

a normal return-from-procedure-call instruction (ret) in order
to return to the caller.

2.8 Summary

We have seen the path in and out of the kernel on a system
call. As you can tell, it is much more complex than a simple pro-
cedure call, and requires a careful protocol on behalf of the OS
and hardware to ensure that application state is properly saved
and restored on entry and return. As always, the concept is easy:
with operating systems, the devil is always in the details.

OPERATING

SYSTEMS ARPACI-DUSSEAU

UNDER THE HOOD: THE SYSTEM CALL 13

References

[CK+08] “The xv6 Operating System”
Russ Cox, Frans Kaashoek, Robert Morris, Nickolai Zeldovich
From: http://pdos.csail.mit.edu/6.828/2008/index.html
xv6 was developed as a port of the original UNIX version 6 and represents a beautiful,
clean, and simple way to understand a modern operating system. We’ll try to peek inside
it as often as possible to see some of the concepts we talk about in class in action.

[I09] “Intel 64 and IA-32 Architectures Software Developer’s Manuals”
Intel, 2009
Available: http://www.intel.com/products/processor/manuals
In particular, pay attention to “Volume 3A: System Programming Guide Part 1” and
“Volume 3B: System Programming Guide Part 2”

[L76] “Lions’ Commentary on UNIX 6th Edition”

John Lions, 1976.

Info: http://en.wikipedia.org/wiki/Lions

ARPACI-DUSSEAU

WHAT

HAPPENS

WHEN (V0.3)

