
CSCI 360
Introduction to Operating Systems

I/O System

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• I/O Concepts
– I/O Devices

– Device Controllers

– I/O Ports

– Memory Mapped I/O

– Programmed I/O

– Interrupt Driven I/O

– Direct Memory Access
(DMA)

– I/O Using DMA

• I/O Software Layers
– User I/O Layer

– Device Independent I/O
Layer

– Device Driver

– Interrupt Handler

• I/O Buffering

I/O Devices

• Mainly 2 types of I/O devices

– Block Devices: Hard Disk, Blue-ray Disk, and USB
Stick

– Character Devices: Printer, Network Interface
Card, and Mouse.

I/O Devices

• Block Devices

– Stores information in fixed-size blocks, each one
with its own address.

– Transfers are in units of entire blocks.

– Allows to read or write each block independently.

I/O Devices

• Character Devices

– Transfers stream of characters, without regard to
block structure

– Not addressable, does not have any seek
operation

I/O Devices
Come with fixed data rate.

Device Controller

Device Controllers connect devices to the systems

System

Device Controller

Device

Device

Device

Device Controller

Device Controller

Device Controller

• Each Device Controller has control registers that
the system can use to write control commands to
the device.

• Control registers can also be read to know the
status of the device.

• Some devices may have data buffer in addition to
control registers.

• Control registers and data buffer can be addressed
in two ways:

– Using I/O port numbers

– Mapping to memory addresses.

I/O Port Numbers

• Controller registers are assigned 8 or 16-bit port
numbers to address.

• I/O port space is separate from memory address
space.

• System access I/O ports by using special I/O
instructions.

IN REG PORT

OUT PORT REG

Memory-Mapped I/O

(a) Separate I/O and memory space.
(b) Memory-mapped I/O. (c) Hybrid.

Each control register is mapped to a unique
memory address to which no memory is assigned.

Programmed I/O

Steps in printing a string.

Programmed I/O

Writing a string to the printer
using programmed I/O.

Programmed I/O

• Programmed I/O is Synchronous or Blocking.

• CPU is busy with I/O operation until the I/O transfer
is complete.

Interrupt Driven I/O

Interrupt Driven I/O

• Interrupt driven I/O is asynchronous or non-blocking.

• CPU proceeds with other jobs until interrupted by the device
controller.

Interrupt-Driven Disk I/O

• System writes a read command on disk controller.

• Disk controller

– Reads the data block from the drive serially, bit by bit,
until the entire block is in the controller’s internal buffer.

– Computes the checksum to verify that no read errors
have occurred.

– Assert interrupt to the CPU

• System (Interrupt Handler) transfers data from the
controller buffer to the memory.

Direct Memory Access

• Getting I/O data one byte at a time wastes CPU
time.

• Using Direct Memory Access (DMA) CPU time
waste is avoided.

• System needs a DMA Controller, which has direct
access to the system bus to transfer data from I/O
buffer to memory without involving CPU.

• DMA Controllers come with control registers,
memory address registers, and byte count register.

I/O Using DMA

Printing a string using DMA. (a) Code executed when the print
system call is made. (b) Interrupt service procedure.

Disk I/O with DMA

Operation of a DMA transfer.

Disk I/O with DMA

• System instructs DMA controller by setting source
and destination addresses and the byte count.

• System also instructs the disk controller to read a
block of data from the disk.

• The disk controller reads the whole block into its
internal buffer and asserts a DMA request to DMA
controller.

• DMA Controller requests for system bus access.

Disk I/O with DMA

• DMA controller completes the data transfer from
the disk controller buffer to the memory after
acquiring system bus access.

• Once the transfer is complete, DMA controller
asserts DMA acknowledgement to the disk
controller and interrupt to the system.

• System (interrupt handler) asserts interrupt
acknowledgement to DMA controller and unblock
the user process that was waiting for the I/O to
complete.

Goals of the I/O Software

• Device independence

– Similar methods to access different types of
devices.

• Uniform naming

– Similar naming scheme for different types of
devices.

• Error handling

– Device controller must handle and conceal as many
errors as possible

Goals of the I/O Software

• I/O operation may be synchronous (blocking)
or asynchronous (interrupt driven)

• Buffering

– Device controller should employ buffer to
decouple system and I/O speeds

I/O Software Layers

User-Space I/O Software

Layers of the I/O system and
the main functions of each layer.

Device-Independent I/O Software

Functions of the
device-independent I/O software.

Uniform Interfacing
for Device Drivers

(a) Without a standard driver interface.
(b) With a standard driver interface.

Device Drivers

• Logical positioning of device drivers.

• In reality all communication between drivers and device
controllers goes over the bus.

Interrupt Handlers

• Interrupt hardware flips the mode bit in PSW
to kernel mode.

• Pushes PC onto stack.

• Jumps to the interrupt handler corresponds to
the interrupt vector.

Interrupt Handlers

Interrupt handler (I/O software) steps:

1. Pushes registers (including the PSW) that are not saved
by interrupt hardware onto the stack.

2. Set up context for interrupt service procedure.

3. Set up a stack for the interrupt service procedure.

4. Acknowledge interrupt controller. If no centralized

interrupt controller, re-enable interrupts.

5. Copy saved registers from the stack into process table.

Interrupt Handlers

Interrupt handler (I/O software) steps:

6. Run interrupt service procedure. Extract
information from interrupting device controller’s
registers.

7. Get next process to run from CPU scheduler.

8. Set up the MMU context for the next process to run.

9. Load new process’s registers, including its PC, PSW.

10. Return from interrupt calling IRET, as a consequence
hardware flips the mode bit to user mode.

11. Start running the new process.

Buffering

(a) Unbuffered input. (b) Buffering in user space. (c) Buffering
in the kernel followed by copying to user space. (d) Double

buffering in the kernel.

Buffering

Networking may involve many
copies of a packet.

Summary

• I/O Concepts
– I/O Devices

– Device Controllers

– I/O Ports

– Memory Mapped I/O

– Programmed I/O

– Interrupt Driven I/O

– Direct Memory Access
(DMA)

– I/O Using DMA

• I/O Software Layers
– User I/O Layer

– Device Independent I/O
Layer

– Device Driver

– Interrupt Handler

• I/O Buffering

Next

– Protection Domain

– Access Control List

– Capabilities

Protection

