
CSCI 360
Introduction to Operating Systems

I/O System

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• I/O Concepts
– I/O Devices

– Device Controllers

– I/O Ports

– Memory Mapped I/O

– Programmed I/O

– Interrupt Driven I/O

– Direct Memory Access
(DMA)

– I/O Using DMA

– Interrupt Controller

• I/O Software Layers
– User I/O Layer

– Device Independent I/O
Layer

– Device Driver

– Interrupt Handler

I/O Devices

• Mainly 2 types of I/O devices

– Block Devices: Hard Disk, Blue-ray Disk, and USB Stick

– Character Devices: Printer, Network Interface Card, and
Mouse.

I/O Devices

• Block Devices

– Stores information in fixed-size blocks, each one with its
own address.

– Transfers are in units of entire blocks.

– Allows to read or write each block independently.

I/O Devices

• Character Devices

– Transfers stream of characters, without regard to block
structure

– Not addressable, does not have any seek operation

I/O Devices
Come with fixed data rate.

Device Controller

Device Controllers connect devices to the systems

System

Disk Controller

USB Controller

Graphics Controller

Monitor

Keyboard

Disk

Device Controllers I/O Devices

Device Controller

• Each Device Controller has control registers that the system
can use to write control commands to the device.

• Control registers or status registers can be read to know the
status of the device.

• Some devices may have data buffer in addition to control
registers.

• Control registers and data buffer can be addressed in two
ways:

– Using port numbers

– Mapping to memory addresses.

Port Mapped I/O

• Controller registers are assigned 8 or 16-bit port
numbers to address.

• I/O port space is separate from memory address
space.

• System access I/O ports by using special I/O
instructions.

IN reg port_number

OUT port_number reg

Memory-Mapped I/O

Hybrid I/O

Each control register is mapped to a unique memory
address to which no memory is assigned.

Separate I/O and
memory spaces

Memory-mapped I/O

Programmed I/O

Steps in printing a string

String in user
Buffer

String copied to
Kernel buffer and letter A
has been printed

Letter B
has been printed

Programmed I/O

Writing a string to the printer using programmed I/O.

print_driver(buffer, p, count) {

copy_from_user(buffer, p, count); // p is the kernel buffer

for(i=0; i<count; i++) { // loop on every character

while(*printer_status_reg != READY); // loop until ready

*printer_data_register = p[i]; // output one character

}

return_to_user();

}

Print Device Driver code, invoked through system call

Programmed I/O

• Programmed I/O is Synchronous or Blocking.

• CPU is busy with I/O operation until the I/O transfer is
complete.

Interrupt Driven I/O

Writing a string to the printer using Interrupt Driven I/O

Print Device Driver code, invoked through system call

print_driver(buffer, p, count) {

copy_from_user(buffer, p, count); // p is the kernel buffer

i = 0; // initialize print count

enable_interrupts();

while(*printer_status_reg != READY); // loop until ready

*printer_data_register = p[i++]; // output first character and

// increment print count

scheduler();

}

Interrupt Driven I/O

Writing a string to the printer using Interrupt Driven I/O

Print Interrupt Service code, invoked through device Interrupt

print_interrupt_service() {

if(count == 0) {

unblock_user();

}

else {

*printer_data_register = p[i++]; // output one character and increment print count

count--; // decrement character count

}

acknowledge_interrupt();

return_from_interrup();

}

Interrupt Driven I/O

Writing a string to the printer using Interrupt Driven I/O

System
Printer

Controller
Printer

printer_data_register = p[0]

scheduler()

Interrupt

print_interrupt_service()

print_driver(buffer, p, count)

Interrupt

print_interrupt_service()

[printed character][status == READY]

[status == READY]

[status == READY] [printed character]

printer_data_register = p[i]

printer_data_register = p[i]

[printed character]

Interrupt [status == READY]

print_interrupt_service()

Interrupt Driven I/O

• Interrupt driven I/O is asynchronous or non-blocking.

• CPU proceeds with other jobs until interrupted by the device
controller or interrupt controller.

Interrupt-Driven Disk I/O

Buffer

Status

ControlDisk Driver

Disk Interrupt
Service

System Disk Controller

Memory

Disk

1. Disk driver
programs disk
controller to

read disk
block n

2. Disk
controller
reads disk

block n

3. Disk
controller
interrupts

system

4. Disk interrupt
service transfers
data from disk

controller buffer
to memory

4. Data from disk
controller buffer

to memory

Reading a disk block from the disk using Interrupt Driven I/O

Interrupt-Driven Disk I/O

System
Disk

Controller
Disk

read_block

scheduler()

Interrupt

disk_interrupt_service()

[block transferred to controller
buffer][status == READY]

[status == READY]

disk_driver(buffer, block)

loop

[byte by byte block transferred to memory buffer]

Interrupt-Driven Disk I/O

• System writes a read command on disk controller.

• Disk controller

– Reads the data block from the drive serially, bit by bit, until the
entire block is in the controller’s internal buffer.

– Computes the checksum to verify that no read errors have occurred.

– Asserts an interrupt to the CPU to transfer the data from the buffer.

• Disk Interrupt Service transfers the data byte by byte from the
controller buffer to the memory.

Direct Memory Access

• Getting I/O data one byte at a time wastes CPU time.

• Using Direct Memory Access (DMA) CPU time waste is
avoided.

• System needs a DMA Controller, which has direct access to
the system bus to transfer data from I/O buffer to memory
without involving CPU.

• DMA Controllers come with control registers, memory
address registers, and byte count register.

Disk I/O with DMA

Operations of a DMA transfer.

Disk I/O with DMA

Block from disk controller buffer
transferred to memory buffer

by

DMA Controller

System
Disk

Controller
Disk

read_block

scheduler()

Interrupt

disk_interrupt_service()

[block transferred to controller
buffer]

[status == READY]

[status == READY]

disk_driver(buffer, block,
count)

DMA
Controller

dma(buffer, count,
disk_controller)

DMA request

[DMA == COMPLETE] DMA ACK[DMA == COMPLETE]

Disk I/O with DMA

• System instructs DMA controller by setting the source (disk
controller buffer) and destination (memory buffer) and the
byte count.

• System also instructs the disk controller to read a block of
data from the disk.

• The disk controller reads the whole block into its internal
buffer and asserts a DMA request to DMA controller.

• DMA Controller requests for the system bus access.

Disk I/O with DMA

• DMA controller completes direct data transfer from disk
controller buffer to memory after acquiring the system bus
access.

• Once the transfer is complete, DMA controller asserts DMA
acknowledgement to the disk controller and interrupt to the
system.

• System (Interrupt Service Routine) asserts interrupt
acknowledgement to DMA controller and unblocks the user
process that was waiting for the I/O to complete.

Interrupt Controller

Interrupt Controller

System
Device

Controller 1
Device 1

End of Interrupt 1

1st Interrupt Acknowledgment

Interrupt Vector 1

device1_interrupt_service()

[TASK
Complete][status == READY]

Interrupt
Controller

Interrupt request 1

RESET IRR 1

Interrupt request

2nd Interrupt Acknowledgment

SET ISR 1

RESET ISR 1

Device
Controller N

Device N

End of Interrupt N

1st Interrupt Acknowledgment

Interrupt Vector N

deviceN_interrupt_service()

[TASK
Complete][status == READY]Interrupt request N

RESET IRR N

Interrupt request

2nd Interrupt Acknowledgment

SET ISR N

RESET ISR N

• Most of the systems come with a single Interrupt Request line
and a single Interrupt Acknowledgement line.

• A centralized Interrupt Controller is often used to get
interrupts from multiple I/O devices.

• An Interrupt Controller comes with multiple Interrupt
Request lines to connect with multiple I/O devices.

• An Interrupt Controller comes with an Interrupt Priority
Resolver to resolve priority of the interrupts from multiple
I/O devices.

• The interrupt from the highest priority device is asserted
through the system Interrupt Request line.

Interrupt Controller

• System asserts the first Interrupt Acknowledgement to
Interrupt Controller to inform the acceptance of the interrupt.

• System asserts the second Interrupt Acknowledgement to the
Interrupt Controller and waits for the Interrupt Vector
corresponding to the requesting device.

• Interrupt Controller asserts the Interrupt Vector to the system
through the data lines.

• System invokes the Interrupt Service Routine corresponding
to the interrupt vector.

• System asserts End of Interrupt to the Interrupt Controller at
the completion of interrupt service routine.

Interrupt Controller

Goals of I/O Software

• Device independence

– Similar methods to access different types of devices.

• Uniform naming

– Similar naming scheme for different types of devices.

• Error handling

– Lower layers must handle and conceal as many errors as
possible from the upper layer

Goals of I/O Software

• I/O operations

– Supports synchronous (blocking) or asynchronous
(interrupt driven) I/O operations.

• Buffering

– Should employ buffers to decouple one layer from another
layer.

Goals of I/O Software

(a) Unbuffered input. (b) Buffering in user space. (c)
Buffering in the kernel followed by copying to user space. (d)

Double buffering in the kernel.

Buffering

Goals of I/O Software

Buffering at three levels (user space, kernel space, and device
controller)

Buffering

I/O Software Layers

I/O Software Layers

User Process I/O Software

User process I/O software is actually the user space
library functions that perform I/O operations, e.g.,
scanf(), printf(), gets(), puts() etc.

Device-Independent I/O Software

Functions of the device-independent I/O software

Device-independent I/O software is actually the
system call functions both user space and kernel space
versions, e.g., open(), close(), read(), write() etc.

Device-Independent I/O Software

With a standard driver
interface

Without a standard
driver interface

Uniform Interfacing for Device Drivers

Device-Independent I/O Software

Kernel level buffering is handled by device-
independent I/O software

Device-Independent I/O Software

• Framework for error handling is device independent although
many errors are device specific.

• Program Errors

– Device independent error handing framework reports back an error
code to the caller.

• Actual I/O Errors

– Device drivers or Disk controllers mostly handle them.

– Device independent error handing framework also handles them when
the lower layers don’t and the response is specific to error type.

Error Handling

Device-Independent I/O Software

• Open and Close

– Forces the process to open and close a special file specific to a
dedicated device before and after using it.

• Device Queue

– Requesting process enters at the back of a device queue to get access
to the device.

– Process at the front of the queue get access of the device and is
removed from the queue.

Allocating and Releasing Dedicated Devices

Device-Independent I/O Software

• Hides the fact that devices (disks) often come with different
block sizes by providing a common logical block size.

• Treats several device blocks as a single logical block.

• Upper layers deal only with abstract devices that all use the
same logical block size, independent of the physical block size.

Providing Device-independent Block Size

Device Drivers

• Code specific to a particular device or a class of devices.
Directly accesses device controller’s registers for giving
commands, reading status, and transferring data.

• Device manufacturers supply the code along with the
devices.

• Device manufactures follow the standard interfaces
defined by the operating systems to write device driver
codes.

• Loaded dynamically and executed as part of operating
system code, i.e., kernel mode.

Device Drivers

Device Driver Functions

1. Accepts abstract read and write requests from device
independent layer.

2. Returns error if the request parameters are not valid.

3. Translates abstract terms into concrete terms, e.g., device
block into device head, cylinder, sector etc.

4. Initializes the device, if needed.

5. Reads device controller status register to check whether the
device is in use or idle.

Device Drivers

Device Driver Functions (continued..)

6. If the device in use enters the request into device queue
and blocks itself. Device interrupt awakens the blocked
device driver.

7. Writes commands to the device controller’s control
register and blocks itself to let the device take actions and
awake the driver by issuing a device interrupt.

8. If successful and if it is necessary, passes the data to the
device-independent software. If unsuccessful, passes the
error code to the caller.

Device Drivers

Device Driver Functions (continued..)

9. If more requests are pending in the device queue,
proceeds with the one at the front and repeats steps 8 to
10.

10. If no more pending requests, blocks itself until a new
request arrives.

Device Drivers

• Logical positioning of device drivers.

• In reality all communication between drivers and device
controllers goes over the bus.

Interrupt Handlers

• Interrupt hardware flips the mode bit in PSW to
kernel mode.

• Pushes PC of the current process onto stack.

• Jumps to the interrupt handler routine.

Interrupt Handlers

Interrupt handler routine (I/O software) steps

1. Pushes registers (including the PSW) of the current process that
are not saved by interrupt hardware onto the stack.

2. Determines which interrupt service routine to invoke based on
interrupt vector.

3. Sets up context for interrupt service routine.

4. Sets up a stack for the interrupt service routine.

5. Copies saved registers (saved by the device driver) from the
stack into process table.

Interrupt Handlers

Interrupt handler (I/O software) steps (continued…)

6. Runs interrupt service routine, which extracts information
from interrupting device controller’s registers and
conditionally unblocks the corresponding user process.

7. Acknowledges interrupt controller. If no interrupt controller,
re-enable interrupts.

8. Gets the interrupted process to run.

9. Sets up the MMU context for the interrupted process to run.

Interrupt Handlers

Interrupt handler (I/O software) steps (continued…)

10. Loads the interrupted process’s PC, PSW, and other necessary
registers.

11. Return from interrupt calling IRET, as a consequence
hardware flips the mode bit to user mode.

12. Start running the interrupted process.

Summary

• I/O Concepts
– I/O Devices

– Device Controllers

– I/O Ports

– Memory Mapped I/O

– Programmed I/O

– Interrupt Driven I/O

– Direct Memory Access
(DMA)

– I/O Using DMA

• I/O Software Layers
– User I/O Layer

– Device Independent I/O
Layer

– Device Driver

– Interrupt Handler

Next

– Protection Domain

– Access Control List

– Capabilities

Protection

