
CSCI 360
Introduction to Operating Systems

File Systems

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline
• File Abstraction

• File Storage

• File Concepts

• Directory Concepts

• Disk Partitions and File System Layout

• Disk Block Allocation

• Free Disk Block Management

• File System Performance

File Abstraction

File abstraction is resulted from the essential
requirements for long-term information storage:

1. System needs to store a very large amount of information.

2. Stored information must survive termination of process that
was using it.

3. If approved, multiple processes must be able to access the
stored information concurrently.

File Storage: Hard Disk
System stores a large amount of information as
a file on a hard disk

File Abstraction

• A disk is a linear sequence of fixed-size sectors or
blocks and supporting two operations:

 Read block k.

 Write block k

• Information of a file may need one or more disk
blocks.

• System allocates free disk blocks to a file and keeps
track of this allocation.

File Structure

Tree
Structure

Information may be structured in different ways
inside a file

Byte
sequence

Record
sequence

File Types

ASCII File

Executable file Archive file

BINARY Files

File Abstraction: Name

• Files are identified by their names.

• Each file has a unique file name.

• File names also have file extensions that indicate
their types.

File Abstraction: Name Extension

Some typical file extensions.

File Abstraction: Attributes

• System maintains many metadata or attributes
about each file.

• System uses file attributes to manage all the files in
the system.

File Abstraction: Attributes

Some possible file attributes.

File Operations

1. Create

2. Delete

3. Open

4. Close

5. Read

6. Write

7. Append

8. Seek

9. Get attributes

10. Set attributes

11. Rename

12. Link

13. Unlink

System permits many operations on a file.

Example Program Using File System Calls

A simple program
to copy a file

#define TRUE 1

#define BUF_SIZE 40960

#define OUTPUT_MODE 0700

int main(int argc, char** argv) {

int in_fd, out_fd, rd_count, wt_count;

char buffer[BUF_SIZE];

if(argc != 3) exit(1);

in_fd = open(argv[1], O_RDONLY);

if(in_fd < 0) exit(2);

out_fd = creat(argv[2], OUTPUT_MODE);

if(out_fd < 0) exit(3);

while(TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE);

if(rd_count <= 0) break;

wt_count = write(out_fd, buffer, rd_count);

if(wt_count <= 0) exit(4);

}

close(in_fd);

close(out_fd);

}

Directory Abstraction

• System uses directories or folders to organize
hundreds of files in a file system.

• Files are stored inside a directory.

• A directory may contain one or more
subdirectories.

• Each directory name uniquely identifies a directory
or subdirectory.

Directory Abstraction

• The contents of a directory, files and
subdirectories, commonly referred to as directory
entries.

• Directory entry holds the name and the attributes
of a file or subdirectory.

• Disk blocks allocated to a file or a subdirectory is
one of its attributes.

Directory Entries

a) A simple directory in which each entry contains the name and
attributes.

b) A directory in which each entry refers to a data structure, which
contains both name and attributes.

Single-Level Directory Systems

A single-level directory system containing four files.

Hierarchical Directory Systems

A hierarchical directory system with subdirectories and files

Path Name

A UNIX directory
tree.

Directory Operations

1. Create

2. Delete

3. Opendir

4. Readdir

5. Rename

6. closedir

System permits many operations on a directory.

File System Disk Layout

• First disk block is the Master Boot Block (MBR), which
contains the code that is executed when the computer
starts.

• A disk is partitioned into several partitions to hold multiple
operating systems on the same disk; one in each partition
and only one partition is active.

• A partition table is kept after MBR on the disk that keeps
track of the starting addresses of all the partitions and the
active partition.

File System Disk Layout

• MBR code reads the partition table and locates the active
partition, then reads the first block, called boot block, of the
active partition and executes it.

• Boot block code loads the operating system, including
filesystem, from the partition into the memory.

• Filesystem information consists of superblock (filesystem’s
metadata, e.g., filesystem type, number of blocks etc.), free-
block information, allocated-block information, root
directory information, and the other directories and files
information.

File System Disk Layout

A possible file system layout

Disk Block Allocation: Contiguous

(a) Contiguous allocation of disk space for seven files.

(b) The state of the disk after files D and F have been removed.

Contiguous allocation is not used

Disk Block Allocation: Noncontiguous

Storing a file as a linked list of disk blocks.

Noncontiguous allocation is being used in many operating systems

The MS-DOS File System
The MS-DOS directory entry contains the disk addresses and
attributes.

File Size
4GB in theory
2GB in practice

The MS-DOS File System

File Allocation Table (FAT)

File A First Block: 4

File B First Block: 6

The MS-DOS File System

• FAT keeps track of both free and allocated disk blocks.

• Root Dir disk block is fixed and right after FAT Blocks.

The UNIX V7 File System

• UNIX V7 directory entry contains only file name and a
pointer to an I-node

• I-node contains the disk addresses and file attributes

Max 64K files and directories

The UNIX V7 File System

• UNIX I-node contains file attributes and disk addresses.

• The first 10 disk block address is directly kept in the I-node.

• I-node also contains the addresses of single, double, and triple indirect
disk block addresses.

The UNIX V7 File System

• Data Block Bitmap keeps track of free disk blocks.

• Inode Bitmap keeps track of free I-nodes.

• I-node table contains i-nodes that keep track of disk block allocation.

• Root Dir uses a fixed i-node.

The UNIX V7 File System

A UNIX i-node Attributes:

o File Size

o Creation Time

o Last Access Time

o Last Modified Time

o Owner

o Group

o Protection

o Link Count

Unix V7 File Systems

Steps to add a file in UNIX:

1. Get the disk blocks for the file from the pool of free disk blocks.

2. Get a free i-node for the file from the pool of free i-nodes.

3. Record the disk blocks into i-node and set the link count to 1.

4. Add a directory entry for the file in its directory.

Unix V7 File Systems

Steps to remove a file in UNIX:

1. Remove the directory entry of the file from its directory.

2. Decrement link count.

3. Release i-node to the pool of free i-nodes if link count
reaches zero.

4. Return all disk blocks to the pool of free disk blocks.

Unix V7 Shared Files

File system containing a shared file.

Assume User B shares User C’s file

Unix V7 File Systems

Steps to add shared file in UNIX:

1. Get the i-node of the original file.

2. Increment the link count.

3. Add a directory entry for the shared file in its directory.

4. Add the i-node number of the original file in the new
directory entry of the shared file.

Unix V7 File Systems

Steps to remove a shared file in UNIX:

1. Remove directory entry of the shared file from its
directory.

2. Decrement the link count in i-node of the original file.

3. If link count becomes zero release i-node to the pool of
free i-nodes and return all disk blocks to the pool of free
disk blocks.

Unix V7 Shared Files

After the original user C
removes the file from
its directory

After linking by
user B

User C’s file
before linking
by user B

The UNIX V7 File System

The steps in looking up /usr/ast/mbox using directory entries and
i-nodes starting from the root directory (assuming i-node 1 is
being used for root directory)

Keeping Track of Free Blocks

Storing the free list on a
linked list

Storing the free list on a
bitmap

Keeping Track of Free Blocks

To enhance performance of free block list

o One block of free block list is kept in memory

o When disk blocks are needed that are taken from the in
memory list.

o If in memory free block list becomes empty a new disk
block of free block list is brought into memory.

o When disks blocks are freed that are added to the in
memory list.

o If the in memory list becomes full it is written back to
disk.

Keeping Track of Free Blocks

An alternative strategy
for handling the three

free blocks avoiding disk
write and read.

An almost-full (has room
for only 2 more pointers)
in memory block and 3

blocks on disk.

Result of freeing a
three-block file.

Almost an empty in
memory block and 4
disk blocks. Will go

back to (a) if a three-
block file is written

back.

File System Consistency

Two kinds of consistency checks

o Block Consistency

o File Consistency

File System Consistency

File system states. (a) Consistent. (b) Missing block 2. (c)
Duplicate block 4 in free list. (d) Duplicate data block 5.

In block consistency check, each block is accounted for how
many times it is in use by the files and how many times it is in
free block list.

File System Consistency

• In file consistency, check all the directories starting from the
root directory.

• Count the presence of each i-node in the directory entries
of the whole file system.

• Compare the presence count against the link count of each
i-node.

• If the link count is higher or lower set it to the presence
count.

File System Caching

• A set of disk blocks are kept in memory in order to reduce
the number of disk accesses.

• Against any read request, the cache blocks are checked
first.

• If the block is in the cache, the request is handled without a
disk access.

• If the block is not in the cache, it is brought into the cache
first and then the request is handled from the cache.

File System Cache Lookup

• Hash the device and disk addresses and lookup into hash
table to find a disk block in the cache.

• All the blocks with the same hash value are chained
together on a linked list.

File System Cache Replacement: LRU

• In addition to the collision chains starting from hash table
there is an additional bidirectional list running through all the
cache blocks.

• The least recently used block on the front of this list and the
most recently used block at the end.

• When a block is referenced, it can be removed from its
position on the bidirectional list and put at the end.

• Cache from the block at the front of the list is reclaimed when
necessary.

• Some blocks are rarely referenced two times within a short
interval that leads to a modified LRU scheme.

File System Cache Replacement

• Modified LRU scheme takes two factors into account:

1. Is the block likely to be needed again soon?

2. Is the block essential to the consistency of the file system?

• Blocks are classified into following classes

– i-node

– Indirect

– Directory

– Full data

– Partially full data

File System Caching

• Block that will not be needed soon, e.g., full data block, goes
to the front of the list and its cache will be reclaimed soon
whenever necessary.

• Block that will be needed soon , e.g., partially full data block,
goes to the rear of the list its cache will not be reclaimed
soon.

• Block that is necessary for the file system consistency, e.g., i-
node, indirect, and directory, and have been modified should
be written into the disk immediately irrespective of its
position in the list.

Reducing Disk Arm Motion

• Disk is divided into cylinder groups, each
with its own blocks and i-nodes.

• When a new file is created it can choose
any i-node from the free i-node list but
choose the data blocks from the same
cylinder group

I-nodes placed at the
start of the disk.

Summary
o File Abstraction

o File Concepts

o Directory Concepts

o Disk Partitions and File

System Layout

o Disk Block Allocation

o Free Disk Block Management

o File System Performance

Next

I/O Systems

– I/O Concepts

– I/O Software

– I/O Software Layers

