
CSCI 360
Introduction to Operating Systems

File Systems

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline
• File Abstraction

• File Storage

• File Concepts

• Directory Concepts

• Disk Partitions and File System Layout

• Disk Block Allocation

• Free Disk Block Management

• File System Performance

File Abstraction

File abstraction is resulted from the essential
requirements for long-term information storage:

1. System needs to store a very large amount of
information.

2. Stored information must survive termination of
process that was using it.

3. If approved, multiple processes must be able to
access the stored information concurrently.

File Storage: Hard Disk
System stores a large amount of information as
a file on a hard disk

File Abstraction

• A disk is a linear sequence of fixed-size sectors
or blocks and supporting two operations:

1. Read block k.

2. Write block k

• Information of a file may need one or more
disk blocks.

• System allocates free disk blocks to a file and
keeps track of this allocation.

File Structure

(a) Byte sequence. (b) Record sequence. (c) Tree.

File information may be structured in different ways inside
a file

File Types

BINARY Files: (a) an executable file. (b)
an archive

ASCII File

File Abstraction: Name

• Files are identified by their names.

• Each file has a unique file name.

• File names also have file extensions that
indicate their types.

File Abstraction: Name Extension

Some typical file extensions.

File Abstraction: Attributes

• System also maintains many metadata or
attributes about each file that are helpful to
manage all the files in the system.

File Abstraction: Attributes

Some possible file attributes.

File Operations

1. Create

2. Delete

3. Open

4. Close

5. Read

6. Write

7. Append

8. Seek

9. Get attributes

10. Set attributes

11. Rename

12. Link

13. Unlink

Example Program Using File System Calls

A simple program to copy a file.

Example Program Using File System Calls

A simple program to copy a file.

Example Program Using File System Calls

A simple program to copy a file.

Directory Abstraction

• System uses directories or folders to keep
track of hundreds of files.

• Files are stored inside a directory.

• A directory may contain one or more
subdirectories.

• Each directory name uniquely identifies a
directory or subdirectory.

Single-Level Directory Systems

A single-level directory system containing four files.

Hierarchical Directory Systems

A hierarchical directory system.

Path Name

A UNIX directory
tree.

Directory Operations

1. Create

2. Delete

3. Opendir

4. Closedir

5. Readdir

6. Rename

Directory Entries

(a) A simple directory containing fixed-size entries with the
disk addresses and attributes in the directory entry. (b) A

directory in which each
entry just refers to an i-node.

Directory Entries (2)

Two ways of handling long file names in a directory. (a) In-
line. (b) In a heap.

Disk Block Allocation: Contiguous

(a) Contiguous allocation of disk
space for seven files. (b) The state of the

disk after files D and F have been removed.

Disk Block Allocation:
Noncontiguous (Linked List)

Storing a file as a linked list of disk blocks.

Allocation Table (Linked List) in
Memory

Linked list allocation using a file
allocation table in main memory.

Allocation Table (List) in I-node

Keeping Track of Free Blocks

(a) Storing the free list on a
linked list. (b) A bitmap.

File System Disk Layout

• First disk block is the Master Boot Block (MBR),
which contains the code that is executed when the
computer starts.

• A disk is partitioned into several partitions to hold
multiple operating systems on the same disk; one in
each partition and only one partition is active.

• A partition table is kept after MBR on the disk that
keeps track of the active partition and the starting
addresses of all the partitions.

File System Disk Layout

• MBR code reads the partition table and locates the
active partition, then reads the first block, called boot
block, of the active partition and executes it.

• Boot block code loads the operating system, including
filesystem, from the partition into the memory.

• Filesystem information consists of superblock
(filesystem’s metadata, e.g., filesystem type, number of
blocks etc.), free-block information, allocated-block
information, root directory information, and the other
directories and files information.

File System Disk Layout

A possible file system layout.

The MS-DOS File System

The MS-DOS directory entry.

File Size
4GB in theory
2GB in practice

The MS-DOS File System

File Allocation Table (FAT)

File A First Block: 4

File B First Block: 6

The UNIX V7 File System

A UNIX V7 directory entry.

Max 64K files and directories

The UNIX V7 File System

A UNIX i-node

The UNIX V7 File System

A UNIX i-node Attributes:
o File Size

o Creation Time

o Last Access Time

o Last Modified Time

o Owner

o Group

o Protection

o Link Count

The UNIX V7 File System

The steps in looking up /usr/ast/mbox.

Unix File Systems

Steps to add a file in UNIX:

1. Get the disk blocks for the file from the pool of
free disk blocks.

2. Get a free i-node for the file from the pool of
free i-nodes.

3. Record the disk blocks into i-node and set the
link count to 1.

4. Add a directory entry for the file in its directory.

Unix File Systems

Steps to remove a file in UNIX:

1. Remove directory entry of the file from its
directory.

2. Release i-node to the pool of free i-nodes.

3. Return all disk blocks to the pool of free disk
blocks.

Unix Shared Files

File system containing a shared file.

Assume User B shares User C’s file

Unix Shared Files

Steps to add shared file in UNIX:

1. Get the i-node of the original file.

2. Increment the link count.

3. Add a directory entry for the shared file in its
directory.

Unix Shared File

Steps to remove a shared file in UNIX:

1. Remove directory entry of the shared file from
its directory.

2. Decrement the link count in i-node.

3. If link count becomes zero release i-node to the
pool of free i-nodes and return all disk blocks to
the pool of free disk blocks.

Unix Shared Files

(a) Situation prior to linking. (b) After the link is created. (c)
After the original owner removes the file.

Free Block List Enhancement

To enhance performance of free block list
o One block of free block list is kept in memory

o When disk blocks are needed that are taken from the in
memory list and are removed from it.

o If in memory free block list becomes empty a new disk
block of free block list is brought into memory.

o When disks blocks are freed that are added to the in
memory list.

o If the in memory list becomes full it is written back to
disk.

Free Block List Enhancement

(a) An almost-full block of pointers to free disk blocks in
memory and three blocks of pointers on disk. (b) Result of

freeing a three-block file. (c) An alternative strategy for
handling the three free blocks. The shaded entries represent

pointers to free disk blocks.

File System Consistency

Two kinds of consistency checks

oBlock Consistency

oFile Consistency

File System Consistency

File system states. (a) Consistent. (b) Missing block 2. (c)
Duplicate block 4 in free list. (d) Duplicate data block 5.

In block consistency check, each block is accounted for how
many times it is in use by the files and how many times it is in
free block list.

File System Consistency

• In file consistency, check all the directories starting
from the root directory.

• Count the presence of each i-node in the directory
entries of the whole file system.

• Compare the present count against the link count
of each i-node.

• If the link count is higher or lower set it to the
present count.

File System Caching

• A set of disk blocks are kept in memory in order to
reduce the number of disk accesses.

• Against any read request, the cache blocks are
checked first.

• If the block is in the cache, the request is handled
without a disk access.

• If the block is not in the cache, it is brought into
the cache first and then the request is handled
from the cache.

File System Caching

The buffer cache data structures.

File System Caching

• Some blocks rarely referenced two times within a short
interval.

• Leads to a modified LRU scheme, taking two factors into
account:
1. Is the block likely to be needed again soon?

2. Is the block essential to the consistency of the file system?

• Blocks are classified into following classes
– i-node

– Indirect

– Directory

– Full data

– Partially full data

File System Caching

• Block that will not be needed soon goes to the front
of the list and its cache will be reclaimed soon
whenever necessary.

• Block that will be needed soon goes to the rear of
the list its cache will not be reclaimed soon.

• Block that is necessary for the file system consistency
and have been modified should be written into the
disk immediately irrespective of its position in the
list.

Reducing Disk Arm Motion

(a) I-nodes placed at the start of the
disk. (b) Disk divided into cylinder groups, each

with its own blocks and i-nodes.

Reducing Disk Arm Motion

When a new file is created it can choose any i-node
from the free i-node list but choose the data blocks
from the same cylinder group

Summary
o File Abstraction

o File Concepts

o Directory Concepts

o Disk Partitions and File

System Layout

o Disk Block Allocation

o Free Disk Block Management

o File System Performance

Next

I/O Systems

– I/O Concepts

– I/O Software

– I/O Software Layers

