CSCI 360
Introduction to Operating Systems

File Systems

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

* File Abstraction

* File Storage

* File Concepts

* Directory Concepts

* Disk Partitions and File System Layout
 Disk Block Allocation

* Free Disk Block Management

* File System Performance

File Abstraction

File abstraction is resulted from the essential
requirements for long-term information storage:

1.

System needs to store a very large amount of
information.

. Stored information must survive termination of

process that was using it.

. If approved, multiple processes must be able to

access the stored information concurrently.

File Storage: Hard Disk

System stores a large amount of information as
a file on a hard disk

track t <— spindle

| <— arm assembly
sector s |
|

|

|

|

| .

| read-write
|

|

|

|

|

|

. |
cylinder ¢ —»:
|

|

|

platter

1D arm -

rotation

File Abstraction

* Adiskis alinear sequence of fixed-size sectors

or blocks and supporting two operations:

1. Read block k.
2. Write block k

* Information of a file may need one or more
disk blocks.

* System allocates free disk blocks to a file and
keeps track of this allocation.

File Structure

File information may be structured in different ways inside
a file

1 Byte 1 Record

Ant Fox Pig

N

IICat Cow || Dog Goat || Lion || Owl Pony || Rat ||Worm

Hen lbis || Lamb

(a) (b) (c)

(a) Byte sequence. (b) Record sequence. (c) Tree.

ASCII File

File Types

Header — »

Magic number

Text size

Data size

BSS size

Symbol table size

Header

Entry point

/./ _/' .'_.—" /.//./ A
. A,

A
A

Object
module

Flags

o Text

Header

Data

31
£

Object
module

A Relocation
T bits

Symbaol
table

[

Header

Module
name

Date

Owner

Protection

Size

Object
module

(a)

an archive

(b)

BINARY Files: (a) an executable file. (b)

File Abstraction: Name

* Files are identified by their names.
* Each file has a unique file name.

* File names also have file extensions that
indicate their types.

File Abstraction: Name Extension

Extension Meaning

.bak Backup file

.C C source program

.gif Compuserve Graphical Interchange Format image
hip Help file

.html World Wide Web HyperText Markup Language document
Jpg Still picture encoded with the JPEG standard
.mp3 Music encoded in MPEG layer 3 audio format
.mpg Movie encoded with the MPEG standard

.0 Object file (compiler output, not yet linked)

Jpdf Portable Document Format file

ps PostScript file

tex Input for the TEX formatting program

xt General text file

ZIip Compressed archive

Some typical file extensions.

File Abstraction: Attributes

e System also maintains many metadata or
attributes about each file that are helpful to
manage all the files in the system.

File Abstraction: Attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked: nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Some possible file attributes.

L A A o

File Operations

Create
Delete
Open
Close
Read
Write

10.
11.
12.
13.

Append

Seek

Get attributes
Set attributes
Rename

Link

Unlink

Example Program Using File System Calls

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int arge, char *argvl]); /* ANSI prototype */
#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])

{

int in_fd, out_fd, rd_count, wt_count:
char buffer[BUF _SIZE];

if (argc = 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */

B R] o L I T R T oy W o P

A simple program to copy a file.

Example Program Using File System Calls

e e e e i e e L i i bt A

if (argc 1= 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */

in_fd = open(argv[1], O_RDONLY); /* open the source file */

if (in_fd < 0) exit(2); [* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; [* if end of file or error, exit loop */

wt_count = write(out_fd, buffer, rd_count); /* write data */
T T T Ty o LTI e Y

A simple program to copy a file.

Example Program Using File System Calls

B e L e e i e e e i i S b
/* Copy loop */
while (TRUE) {
rd_count = read(in_fd, buffer, BUF _SIZE); /* read a block of data */

if (rd_count <= 0) break; /* if end of file or error, exit loop */
wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */

close(in_fd);

close(out_fd);

if (rd_count == 0) /* no error on last read */
exit(0);

else
exit(5); /* error on last read */

A simple program to copy a file.

Directory Abstraction

System uses directories or folders to keep
track of hundreds of files.

Files are stored inside a directory.

A directory may contain one or more
subdirectories.

Each directory name uniquely identifies a
directory or subdirectory.

Single-Level Directory Systems

*-—F{c}ot directory
* % I% ©

A single-level directory system containing four files.

Hierarchical Directory Systems

-~—Root directory

User /

directory.
irectory_ r— 5 c

o> Mo M

VAN

User subdirectories
—=— User file

A hierarchical directory system.

Path Name

bin etc

A UNIX directory
tree.

bin |=— Root directory

etc

i

usr

trnp %

~lib usr tmp
ast
jim
i

ast lib jim |

fusr/jim

dict.

> W

Directory Operations

Create 5. Readdir
Delete 6. Rename
Opendir
Closedir

Directory Entries

T , l /
games | atiributes games | “
mail | attributes mail | 4
. |
news i attributes news i +—
work | attributes work | .ﬁh\
(a) (b) Data structure
containing the
attributes

(a) A simple directory containing fixed-size entries with the
disk addresses and attributes in the directory entry. (b) A
directory in which each
entry just refers to an i-node.

Directory Entries (2)

File 1 entry length - Pointer to file 1's name Entry
¢ for one
File 1 attributes File 1 attributes file
Entry - -) N
for one < P r o] Pointer to file 2's name
file e c 1 . _
b T d g File 2 attributes
€ ! X . Pointer to file 3's name
File 2 entry length
File 3 attributes
File 2 atiributes
p e r 5
o n n e

| |
File 3 entry length

File 3 atiributes

f o o 24

» Heap

== |J|=|=~|S]|O]=
ole|o |Kla|~]|°
ol|—=|o]|o|e

E% ao|lo|o|le|o

(a) (b)
Two ways of handling long file names in a directory. (a) In-
line. (b) In a heap.

Disk Block Allocation: Contiguous

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
e — e 7 e "y — ey
HNEEEEEEEEEEEEEENNEEEEEEEEEEEEEEEEEEEEEES

l_v_l l\—,_f—n l—v—'
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)

(File A) [File C) (File E) (File G)
—— — P *] —
HNEEEEEEEEEENEEEEEEEEEEEEEEEEEEEEEEEEEEES

l_v_l H—_f—l I—\?—I
File B b Free blocks & Free blocks
(b)

(a) Contiguous allocation of disk
space for seven files. (b) The state of the
disk after files D and F have been removed.

Disk Block Allocation:
Noncontiguous (Linked List)

File A
e e e e 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
—— 4 —+4—| 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Storing a file as a linked list of disk blocks.

Allocation Table (Linked List) in

Memory
Physical
block

0
1
2 10
3 11
4 7 ——— File A starts here
5
] 3 - File B starts here
7 2
8
9
10 12
11 14
12 1
13
14 1
15 —=—— Unused block

Linked list allocation using a file
allocation table in main memory.

Allocation Table (List) in I-node

File Attributes

Address of disk block O —
Address of disk block 1 ——
Address of disk block 2 -
Address of disk block 3 —
Address of disk block 4 —
Address of disk block 5 —
Address of disk block 6 e
Address of disk block 7 —i
Address of block of pointers o

Disk block

containing

additional

disk addresses

Keeping Track of Free Blocks

Free disk blocks: 16, 17, 18

42 fb- 230 (-—-‘ 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
48 216 160 1011101101101111
262 320 126 1100100011101111
310 180 142 0111011101110111
516 —/ 482 —/) 141 1101111101110111
A 1-KB disk block can hold 256 A bitmap

32-bit disk block numbers
(a) (b)

(a) Storing the free list on a
linked list. (b) A bitmap.

File System Disk Layout

* First disk block is the Master Boot Block (MBR),
which contains the code that is executed when the
computer starts.

* Adisk is partitioned into several partitions to hold
multiple operating systems on the same disk; one in
each partition and only one partition is active.

* A partition table is kept after MBR on the disk that
keeps track of the active partition and the starting
addresses of all the partitions.

File System Disk Layout

 MBR code reads the partition table and locates the
active partition, then reads the first block, called boot
block, of the active partition and executes it.

* Boot block code loads the operating system, including
filesystem, from the partition into the memory.

* Filesystem information consists of superblock
(filesystem’s metadata, e.g., filesystem type, number of
blocks etc.), free-block information, allocated-block
information, root directory information, and the other
directories and files information.

File System Disk Layout

Partition table

\

-

Entire disk

Disk partition

b~

\

MBR

Boot block

Superblock

Free space mgmt

|-nodes

Root dir

Files and directories

A possible file system layout.

The MS-DOS File System

The MS-DOS directory entry.

Bytes

8 3 1 10 2 2 2 4
=
File name ////// Size
i A § L
1%
7\ TN
Extension Atiributes Reserved Time Déﬂe First
block
number
READONLY Ox00000e01
File Size
HIDDEN Ox000L0R2 .
4GB in theory
SYSTEM 0x00000004 2GB in practice
2y 515121512151 %15
DIRECTORY Ox0000P010
ARCHIVE Ox00000020

The MS-DOS File System

Physical
block

0

0 o~ @ ;M b W b =

S S S S —
L5 I A o B L L=

10

11

12

14

File Allocation Table (FAT)

—-—— File A starts here

—-—— File B starts here

-—— Lnused block

File A

First Block: 4

File B

First Block: 6

The UNIX V7 File System

+ Max 64K files and directories

-
-
-
-
-
-

File name

I-node
number

A UNIX V7 directory entry.

Disk addresses

The UNIX V7 File System

I-node
Afttributes Single
indirect
1~ block
:i Double
indirect
block

\-/"

vl
N

A UNIX i-node

Addresses of
data blocks

-

-l

Triple

indirect

i

black

’

\

The UNIX V7 File System

A UNIX i-node Attributes:

File Size

Creation Time

Last Access Time
Last Modified Time
Owner

Group

Protection

Link Count

O O O O O O O O

The UNIX V7 File System

Block 132 l-node 26 Block 406
I-node 6 is /usr s for Is /usr/ast
Root directory s for /usr directory /usr/ast directory
1] . 6|« 26 | -
Mode Mode
1] .. size 1| »» size 6 | -
times times
4 | bin 19 | dick 64 | grants
7 | dev 132 30 | erik 406 92 | books
14 | lib 51 | jim 60 | mbox
9 | etc 26 | ast 81 | minix
6 | usr 45 | bal 17 | src
8 | tmp
l-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields fusris in is I-node J/usr/ast is in is I-node
I-node 6 block 132 26 block 406 60

The steps in looking up /usr/ast/mbox.

Unix File Systems

Steps to add a file in UNIX:

1.

Get the disk blocks for the file from the pool of
free disk blocks.

Get a free i-node for the file from the pool of
free i-nodes.

Record the disk blocks into i-node and set the
link count to 1.

Add a directory entry for the file in its directory.

Unix File Systems

Steps to remove a file in UNIX:

1.

Remove directory entry of the file from its
directory.

2. Release i-node to the pool of free i-nodes.

3. Return all disk blocks to the pool of free disk

blocks.

Unix Shared Files

. Root directory

Shared file

File system containing a shared file.
Assume User B shares User C’s file

Unix Shared Files

Steps to add shared file in UNIX:
1. Get the i-node of the original file.

2. Increment the link count.

3. Add a directory entry for the shared file in its
directory.

Unix Shared File

Steps to remove a shared file in UNIX:

1. Remove directory entry of the shared file from
its directory.

2. Decrement the link count in i-node.

3. If link count becomes zero release i-node to the
pool of free i-nodes and return all disk blocks to
the pool of free disk blocks.

Unix Shared Files

C's directory B's directory C's directory B's directory
\ i
/ \ / \
Owner =C Owner=C Owner=C
Count =1 Count =2 Count =1
(a) (b) (c)

(a) Situation prior to linking. (b) After the link is created. (c)
After the original owner removes the file.

Free Block List Enhancement

To enhance performance of free block list

o One block of free block list is kept in memory

o When disk blocks are needed that are taken from the in
memory list and are removed from it.

o Ifin memory free block list becomes empty a new disk
block of free block list is brought into memory.

o When disks blocks are freed that are added to the in
memory list.

o If the in memory list becomes full it is written back to
disk.

Free Block List Enhancement

Disk

(a) An almost-full block of pointers to free disk blocks in
memory and three blocks of pointers on disk. (b) Result of
freeing a three-block file. (c) An alternative strategy for
handling the three free blocks. The shaded entries represent
pointers to free disk blocks.

File System Consistency

Two kinds of consistency checks
oBlock Consistency
oFile Consistency

File System Consistency

In block consistency check, each block is accounted for how
many times it is in use by the files and how many times it is in
free block list.

Block number Block number
0123458678 9101112131415 0123458678 9101112131415
[1]1]o[1]o]1]1]1[1]o]o]1]1]1]o]o]|Blocksinuse [1]1]of1|o]1]1[1[1]o]o]1[1]1]0o]0]Blocks in use

o|lo[1[o]|1]o|o]o]o]1]1]ofo]o1]1]Free blocks o|o]|ofo]1]ofo[o]o]1[1]o]o]of1]1]Free blocks
(a) (b)

012345678 9101112131415 012345678 9101112131415

[1]1]o[1]o]1]1]1[1]o]o]1]1]1]o]0]|Blocksinuse [1]1|of1|o]2]1[1[1]o]o]1[1]1]0]0]Blocks in use

[o]o]1|o]2]o]o]o|o]1]1]o]o]o]1]1]Free blocks [o]of1|o|1]o]ofo|o]1]1]ofo|o]1]1]Free blocks
() (d)

File system states. (a) Consistent. (b) Missing block 2. (c)
Duplicate block 4 in free list. (d) Duplicate data block 5.

File System Consistency

In file consistency, check all the directories starting
from the root directory.

Count the presence of each i-node in the directory
entries of the whole file system.

Compare the present count against the link count
of each i-node.

If the link count is higher or lower set it to the
present count.

File System Caching

A set of disk blocks are kept in memory in order to
reduce the number of disk accesses.

Against any read request, the cache blocks are
checked first.

If the block is in the cache, the request is handled
without a disk access.

If the block is not in the cache, it is brought into
the cache first and then the request is handled
from the cache.

File System Caching

Hash table Front (% Rear (MRU)
VO TSN N l
D AN SRy

/

y
$

The buffer cache data structures.

File System Caching

Some blocks rarely referenced two times within a short
interval.

Leads to a modified LRU scheme, taking two factors into
account:

1. Isthe block likely to be needed again soon?

2. Isthe block essential to the consistency of the file system?

Blocks are classified into following classes
— i-node

— Indirect

— Directory

— Full data

— Partially full data

File System Caching

* Block that will not be needed soon goes to the front
of the list and its cache will be reclaimed soon
whenever necessary.

* Block that will be needed soon goes to the rear of
the list its cache will not be reclaimed soon.

* Block that is necessary for the file system consistency
and have been modified should be written into the
disk immediately irrespective of its position in the
list.

Reducing Disk Arm Motion

|-nodes are Disk is divided into

located near cylinder groups, each
the start with its own i-nodes

of the disk P

Cylinder group

(a) I-nodes placed at the start of the
disk. (b) Disk divided into cylinder groups, each
with its own blocks and i-nodes.

Reducing Disk Arm Motion

When a new file is created it can choose any i-node
from the free i-node list but choose the data blocks
from the same cylinder group

Summary

File Abstraction
File Concepts
Directory Concepts

Disk Partitions and File
System Layout

Disk Block Allocation
Free Disk Block Management

File System Performance

Next
/O Systems

— /O Concepts
— /O Software

— |1/O Software Layers

