
CSCI 360
Introduction to Operating Systems

Memory Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

– Address Space

– Swapping

– Free Memory Management

– Memory Allocation Algorithms

– External Fragmentation and Compaction

– Virtual Memory and Paging

– Page Table

– Page Replacement Algorithms

– Page Fault

– Segmentation

Memory Management

No Memory Abstraction

Three simple ways of organizing memory with an operating system
and one user process. Other possibilities also exist

Without a Memory Abstraction

Illustration of the relocation problem

(a) A 16-KB program

(b) Another 16-KB program

(c) The two programs loaded consecutively
into memory.

Base and Limit
registers can be
used to give each
process a separate
address space.

Memory Abstraction: Address Space

Swapping

Memory allocation changes as processes come into memory and
leave it. The shaded regions are unused memory

Swapping

(a) Allocating space for a growing data segment.
(b) Allocating space for a growing stack and a growing data segment.

Free Memory Management

(b) The corresponding bitmap. (c) The same information as a
linked list.

(a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units.
The shaded regions are free.

Free Memory Management

Four neighbor combinations for the
terminating process, X.

Memory Allocation Algorithms

• First fit

• Next fit

• Best fit

• Worst fit

• Quick fit

External Fragmentation and Compaction

• External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory

together in one large block

– Compaction is possible only if relocation is dynamic,

and is done at execution time

– I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation

problems

Virtual Memory

• There is a need to run programs that are too
large to fit in memory

• Solution adopted in the 1960s, split programs
into little pieces, called overlays

– Kept on the disk, swapped in and out of memory

• Virtual memory : each program has its own
address space, broken up into chunks called
pages

Paging

The position and function of the MMU.

Paging

Every page begins on a multiple of
4096 and ends 4095 addresses
higher, so 4K–8K really means

4096–8191 and 8K to 12K means
8192–12287

The relation between
virtual addresses and
physical memory
addresses is given by the
page table.

Paging

Virtual to Physical
address translation
operation MMU
with 16 4-KB pages.

Page Table

A typical page table entry.

Speeding Up Paging

Major issues faced:

1. The mapping from virtual address to physical
address must be fast.

2. If the virtual address space is large, the page
table will be large.

Translation Lookaside Buffers

Page Table

Paging

1 2

TLB
Hit

TLB
Miss

1 2

0

1

2

.

.

15

TLB

Page Number Frame number

2

0

Page Frame number

1

2

255

.

.

.

Page Table

Frame 0

Frame 1

Frame 2

Frame 63

Physical
Memory

Page Number Offset

Logical address

Frame Number Offset

Physical address

Multilevel Page Tables

A 32-bit address with
two page table fields

Virtual Addresses
0x00403004, 0x00803004

Two-level page tables

Inverted Page Tables

Comparison of a traditional page table with an inverted page table
for 64-bit virtual address space and 1-GB physical memory

Page Replacement Algorithms

• Optimal algorithm

• Not recently used (NRU) algorithm

• First-in, first-out (FIFO) algorithm

• Second-chance algorithm

• Clock algorithm

• Least recently used (LRU) algorithm

• Working set algorithm

• WSClock algorithm

Optimal Algorithm

• Each page can be labeled with the number of
instructions that will be executed before the
page is first referenced.

• At page fault, the page with the highest label
should be removed.

• It is unrealizable.

Not Recently Used (NRU)
Algorithm

• R bit of a page is set when the page reference
occurs and is cleared at every clock interrupt.

• M bit of a page is set when the page reference
occurs to write and is not cleared at clock
interrupts.

Not Recently Used (NRU)
Algorithm

• At page fault, system categories pages based
on the current values of their R and M bits:

Class 0: not referenced, not modified.

Class 1: not referenced, modified.

Class 2: referenced, not modified.

Class 3: referenced, modified.

• Removes a page at random from the lowest-
numbered nonempty class

First In First Out (FIFO) Algorithm

• System maintains a list of all pages currently in memory,

with the most recent arrival at the tail and the least

recent arrival at the head.

• At page fault, the page at the head is removed and the

new page added to the tail of the list.

• Not used in real systems.

Second-Chance Algorithm

• System maintains a list of all pages currently in memory,

with the most recent arrival at the tail and the least

recent arrival at the head like FIFO algorithm.

• At page fault, the page at the head’s R bit is checked.

o If R bit is zero, the page is removed and the new page

added to the tail of the list.

o If R bit is one, the page is removed from the head and

added back at the tail with R bit cleared and load time

modified and the search continues.

Second-Chance Algorithm

Operation of second chance. (a) Pages sorted in FIFO order. (b)
Page list if a page fault occurs at time 20 and A has its R bit set.

Clock Page Replacement Algorithm

• Keeps all the pages in memory on a circular list in
the form of a clock.

Least Recently Used (LRU) Algorithm

• System is equipped with a 64-bit counter in hardware.

• At every instruction execution the counter value is

incremented.

• At every page reference current counter value is

recorded in the corresponding page table entry.

• At page fault, the page with the lowest counter value is

removed.

Not Frequently Used (NFU)
Algorithm

• System maintains a software counter for each page and

initializes it with zero.

• At every clock interrupt, all the pages in the memory are

checked and its R bit (0 or 1), is added to its counter.

• At page fault, the page with the lowest counter value is

removed.

Simulating LRU in Software

• System keeps a software counter for each page in the

memory, initializes it to zero.

• At every clock interrupt, each page counter is shifted 1

bit right and a 1 is added at the left (most significant bit)

if the page has been referenced in this clock tick. This is

called aging.

• At page fault, the page with the lowest counter value is

removed.

Simulating LRU in Software

The aging algorithm simulates LRU in software. Shown are six
pages for five clock ticks. The five clock ticks are represented

by (a) to (e).

Working Set Algorithm

• The set of pages that a process is currently using is its

working set.

• If the entire working set is in memory, the process will

run without causing many page faults.

• A program causing page faults every few instructions is

said to be thrashing.

• Working set algorithm aims to minimize thrashing.

• Prepaging the working set into the memory may cause

less thrashing compared to demand paging.

• Prepaging is less practical than demand paging.

Working Set Algorithm

The working set is the set of pages used by the k most recent
memory references. The function w(k, t) is the size of the

working set at time t.

Working Set Algorithm

• System can maintain a shift register of length k, with

every memory reference shifting the register left one

position and inserting the most recently referenced page

number on the right.

• The set of all k page numbers in the shift register would

be the working set.

• At page fault, the page not in the shift register can be

removed.

• Maintaining the shift register and processing it at a page

fault would both be expensive, i.e., never used.

Working Set Algorithm with Time
of Last Use Approximation

• Current virtual time of each process is tracked by

tracking its actual cpu usage from the start.

• Current virtual time is used to approximate the time of

last use of each page of the process and recorded in

the page table entry.

• At page fault, page table entries are scanned to evict

one.

• If R bit is 1, the current virtual time of the process is

written as the time of last use of the page and proceeds.

Working Set Algorithm with Time
of Last Use Approximation

• If R bit is 0, the age of the last use of the page is

computed by subtracting its time of last use from current

virtual time.

– If the age is greater than ꚍ, the page is evicted and the scan

continues to update other page entries.

– If the age is less than or equal to ꚍ, the page is kept and the

page with the greatest age is kept tracked. If no page with
the age greater than ꚍ is found in the whole scan, the page

with the greatest age is evicted.

• If no page with R bit 0 is found in the whole scan, a page
is picked randomly to evict.

Working Set Algorithm with Time
of Last Use Approximation

WSClock Algorithm

• Combined working set and clock algorithms.

• At page fault, the page table entry at clock hand is

checked.

• If its R bit is 1, it is set to 0 and the current virtual time of

the process is written as the time of last use of the page

and proceeds by advancing the clock hand.

WSClock Algorithm

Operation of the WSClock algorithm. (a) and (b) give an
example of what happens when R = 1.

WSClock Algorithm
• If R bit is 0, and the age is greater than ꚍ, it checks the

M bit

o If M bit is 0, the page is evicted and the new page is loaded

and its last time use is set to current virtual time.

o If the M bit is 1, the page is not evicted but a disk write for the

page is scheduled.

o Clock hand is moved to the next page in both cases.

• If no page has been evicted but some pages have

scheduled for disk write, clock hand keeps moving to

find a clean page to evict.

• If no page has been scheduled for disk write, clock hand

keeps moving to find any clean page to evict.

• If no clean page has been found the page at clock hand
is evicted.

WSClock Algorithm

Operation of the WSClock algorithm.
(c) and (d) give an example of R = 0.

WSClock Algorithm

WSClock (Carr and Hennessey, 1981)

Summary of Page Replacement
Algorithms

Page replacement algorithms discussed in the text.

Local versus Global Allocation Policies

Local versus global page replacement.
(a) Original configuration. (b) Local page replacement.

(c) Global page replacement.

Page Fault

1. The hardware traps to kernel, saving program
counter on stack.

2. Assembly code routine started to save
general registers and other volatile info

3. system discovers page fault has occurred,
tries to discover which virtual page needed

4. Once virtual address caused fault is known,
system checks to see if address valid and the
protection consistent with access

Page Fault

5. If frame selected dirty, page is scheduled for
transfer to disk, context switch takes place,
suspending faulting process

6. As soon as frame clean, operating system
looks up disk address where needed page is,
schedules disk operation to bring it in.

7. When disk interrupt indicates page has
arrived, tables updated to reflect position,
and frame marked as being in normal state.

Page Fault

8. Faulting instruction backed up to state it had
when it began and program counter is reset

9. Faulting process is scheduled, operating
system returns to routine that called it.

10. Routine reloads registers and other state
information, returns to user space to
continue execution

Backing Store

(a) Paging to a static swap area.
(b) Backing up pages dynamically.

Segmentation
• Paging suffers from internal fragmentation.

• The address space of a process has logical divisions

as follows:
1. Code

2. Data

3. Constants

4. Stack

5. Heap

• Instead of using a single and flat address space, a
process can use multiple segmented address spaces
(called segments); one segment for each logical
division.

Segmentation

• It is not necessary to place all the segments of
process together in the main memory, rather, they
can be placed independently anywhere in the
memory.

• Different segments of a process can be of different
sizes.

• Each segment can grow and shrink independently
without bumping into each other.

• No internal fragmentation but external
fragmentation is unavoidable.

Segmentation

(a)-(d) Development of checkerboarding.
(e) Removal of the checkerboarding by compaction.

Segmentation

• Each logical address of a process will have a segment
number and an offset.

• Each process will have a segment table with
segment descriptors that will keep track where each
segment starts.

• Address translation in a segmentation mechanism is
very simple.

– Segmentation number is used as the index of the
segmentation table to find the start of the segment.

– Once the start of the segment is found that is added with
the offset to compute the physical address.

Segmentation

seg1 base

0

Segm
ent

Segment Base
Address

1

2

16

.

.

.

Segment Table

Segment 0

Segment 1

Segment 2

Segment 3

Physical
Memory

Segment1 Offset

Logical address

seg1 base

Offset

Physical address

Segmentation

Comparison of paging and segmentation

Segmentation with Paging: MULTICS

The MULTICS virtual memory. (a) The descriptor segment
pointed to the page tables.

Segmentation with Paging: MULTICS

The MULTICS virtual memory. (b) A segment descriptor. The
numbers are the field lengths.

Segmentation with Paging: MULTICS

A 34-bit MULTICS virtual address.

Segmentation with Paging: MULTICS

Conversion of a two-part MULTICS address into a main
memory address.

Segmentation with Paging: MULTICS

A simplified version of the MULTICS TLB. The existence of two page
sizes made the actual TLB more complicated.

Summary

o Address Space
o Swapping
o Free Memory Management
o Memory Allocation

Algorithms
o External Fragmentation

and Compaction
o Virtual Memory and Paging
o Page Table
o Page Replacement

Algorithms

o Page Fault
o Segmentation

Next

– File Abstraction

– File Concepts

– Directory Concepts

– Disk Partitions and File System Layout

– Disk Block Allocation

– Free Disk Block Management

– File System Performance

File System

