
CSCI 360
Introduction to Operating Systems

Deadlock

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline
• Preemptable and Nonpreemptable

Resources
• Resource Acquisition
• Conditions for Resource Deadlock
• Deadlock Detection
• Recovering from Deadlock
• Deadlock Avoidance: Banker’s Algorithm
• Deadlock Prevention

Deadlock Definition

A set of processes is deadlocked if …
• Each process in the set waiting for an

event
• That event can be caused only by

another process

Preemptable and Nonpreemptable
Resources

• A preemptable resource can be taken away
from the owning process with no harm, e.g.,
Memory

• A nonpreemptable resource cannot be taken
away from the owning process without any
harm, e.g., CD-ROM

• Nonpreemptable resources leads to
deadlocks.

Sequence of events required to use a
resource
• Request the resource.
• Use the resource.
• Release the resource.

Resource Acquisition

Resource Acquisition

Using a semaphore to protect resources.
(a) One resource. (b) Two resources.

Resource Acquisition

(a) Deadlock-free code.
(b) Code with a potential deadlock.

Conditions for Resource Deadlocks

Four conditions that must hold:
1. Mutual exclusion
2. Hold and wait
3. No preemption
4. Circular wait condition

Deadlock Modeling

Resource allocation graphs. (a) Holding a resource. (b)
Requesting a resource. (c) Deadlock.

Deadlock Modeling

An example of how deadlock occurs
and how it can be avoided.

Deadlock Modeling

An example of how deadlock occurs
and how it can be avoided.

Deadlock Modeling

Deadlock Dealing Strategies

Strategies are used for dealing with deadlocks:
1. Ignore the problem, maybe it will go away.
2. Detection and recovery. Let deadlocks occur,

detect them, and take action.
3. Dynamic avoidance by careful resource

allocation.
4. Prevention, by structurally negating one of

the four required conditions.

Deadlock Detection with One
Resource of Each Type

1. Process A holds R, wants S
2. Process B holds nothing, wants T
3. Process C holds nothing, wants S
4. Process D holds U, wants S and T

5. Process E holds T, wants V
6. Process F holds W, wants S
7. Process G holds V, wants U

Algorithm to Detect Deadlocks

For each node, N in the graph, perform following five steps with
N as starting node.

1. Initialize L to empty list, and designate all arcs as unmarked.
2. Add current node to end of L, check to see if node now appears in L

two times. If so, graph contains a cycle (listed in L) and algorithm
terminates

3. From given node, see if there are any unmarked outgoing arcs. If so,
go to step 4; if not, go to step 5.

4. Pick unmarked outgoing arc at random, mark it. Then follow to new
current node and go to step 2.

5. If this is initial node, graph does not contain cycles, algorithm
terminates. Otherwise, dead end. Remove it and go back to the
previous node.

Deadlock Detection with Multiple
Resources of Each Type

The four data structures needed
by the deadlock detection algorithm.

Deadlock Detection with Multiple
Resources of Each Type

Deadlock detection algorithm:
1. Look for unmarked process, Pi , for which the

i-th row of R is less than or equal to A.
2. If such a process is found, add the i-th row of

C to A, mark the process, go back to step 1.
3. If no such process exists, algorithm

terminates.

Deadlock Detection with Multiple
Resources of Each Type (3)

An example for the deadlock detection algorithm.

Recovery from Deadlock

Possible Methods of recovery (though none
are “attractive”):
1. Preemption
2. Rollback
3. Killing processes

Deadlock Avoidance
Resource Trajectories

Two process resource trajectories.

Safe and Unsafe States

Demonstration that the state in (a) is safe.

Safe and Unsafe States

Demonstration that the state in (b) is not safe.

Banker’s Algorithm for
Single Resource

Three resource allocation states:
(a) Safe. (b) Safe. (c) Unsafe.

Banker’s Algorithm for
Multiple Resources

The banker’s algorithm with multiple resources.

Banker’s Algorithm for
Multiple Resources

1. Look for a row, R, whose unmet resource needs are
all smaller than or equal to A. If no such row exists,
system will eventually deadlock.

2. Assume the process of row chosen requests all
resources needed and finishes. Mark that process
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are
marked terminated (safe state) or no process is left
whose resource needs can be met (deadlock)

Deadlock Prevention

Assure that at least one of conditions is
never satisfied
• Mutual exclusion
• Hold and wait
• No Preemption
• Circular wait

Attacking Circular Wait Condition

(a) Numerically ordered resources.
(b) A resource graph

Attacking Circular Wait Condition

Summary of approaches to deadlock prevention.

Summary
o Preemptable and Nonpreemptable Resources
o Resource Acquisition
o Mutual exclusion
o Hold and wait
o No preemption
o Circular wait condition
o Deadlock Detection
o Recovering from Deadlock
o Deadlock Avoidance: Banker’s Algorithm
o Deadlock Prevention

Next

– Address Space
– Swapping
– External Fragmentation and Compaction
– Free Memory Management
– Memory Allocation Algorithms
– Virtual Memory and Paging
– Page Table
– Page Replacement Algorithms
– Page Size and Internal Fragmentation
– Page Fault Frequency and Thrashing

Memory Management

