CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

Inter Process Communications (IPC)

Pipes
Message Passing
Shared Memory

Process Synchronization

Race Condition

Critical Region Problem: Peterson’s Solution
Producer Consumer Problem

Semaphore

Mutex

The Dinning Philosophers Problem

The Readers and Writers Problem

Inter Process Communication

Processes within a system may be independent or
cooperating

Independent process cannot affect or be affected by the
execution of another process

Cooperating process can affect or be affected by other
processes, including sharing data

Reasons for cooperating processes:
e Information sharing
e Computation speedup
e Modularity
e Convenience

Cooperating processes need interprocess communication
(IPC)

Inter Process Communication

B Three models of IPC
e Pipe
e Shared Memory
e Message Passing (Message Queue)

IPC: Pipe

B Pipe acts as a conduit allowing two processes
to communicate

B Ordinary pipes — cannot be accessed from
outside the process that created it. Typically, a
parent process creates a pipe and uses it to
communicate with a child process that it
created.

® Named pipes — can be accessed without a
parent-child relationship.

IPC: Pipe

B Ordinary Pipes allow communication in standard producer-consumer style
B Producer writes to one end (the write-end of the pipe)
B Consumer reads from the other end (the read-end of the pipe)
B Ordinary pipes are therefore unidirectional
B Require parent-child relationship between communicating processes
parent child
fd[0] fd[1] fd[0] fd[1]

L)

B Windows calls these anonymous pipes

IPC: Pipe

Named Pipes are more powerful than ordinary
pipes

No parent-child relationship is necessary
between the communicating processes

Several processes can use the named pipe for
communication

Communication is unidirectional in most of the
systems

Provided on both UNIX and Windows systems

Message Queue

process A

process B

message queue

—» Mp|M4¢ Mo Mg| ... |[Mp|e—

kernel

Message Queue

Message queue has configurable internal structure
e size of each message
e size of the queue
Provides two operations to the communicating processes
e send(message)
® receive(message)
More than two processes can send and receive
Send operation assigns a priority to each message

Oldest message with the highest priority goes to the front of the
queue

Receive operation gets and removes the front message from the
gueue.

A process can check the status of the queue.

Shared Memory

process A

—» shared memory (e

process B

kernel

Shared Memory

® An area of memory shared among the
processes that wish to communicate

B The communication is under the control of
the users processes not the operating
system.

B Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory.

Race Condition

Spooler

directory
4 abc out=4
6 prog.n
7 in=7

Two processes want to access
shared memory at the same time.

Critical Regions

Requirements to avoid race conditions:

* No two processes may be simultaneously inside their
critical regions.

* No assumptions may be made about speeds or the
number of CPUs.

* No process running outside its critical region may
block other processes.

* No process should have to wait forever to enter its
critical region.

Critical Regions

A enters critical region

/ A leaves critical region

Process A | I
| | | |
I I I I
I I B attempts to I B enters | B leaves
| : enter critical : critical region | critical region
region
I | I I
| |
Process B I I \-I!!'II!!II!!II!!-!I!!I’I-!!I’II!I’II::-I
| | v | |
I 1 B blocked I l
T T, Ty T,

Mutual exclusion using critical regions.

Mutual Exclusion with Busy Waiting:
Strict Alternation

while (TRUE) { while (TRUE) {
while (turn 1= 0) /* loop */; while (turn 1= 1) * loop */ ;
critical _region(); critical_region();
turn = 1; turn = 0;
noncritical _region(); noncritical _region();
))
(a) (b)

A proposed solution to the critical region problem.
(a) Process 0. (b) Process 1.

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

#define FALSE 0
fidefine TRUE 1

#define N 2 /* number of processeas */

int turn; [+ whose turn Is it? =/

int interested[N]; /* all values initially O (FALSE) */

void enter_region(int process); f* process is O or 1 =/

{
int other; f* number of the other procass =/
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; f* set flag =/

while (turn == process && interested[other] == TRUE) /* null statement =/ ;

}

void leave_region(int process) /* process: who is leaving */

{
}

interested[process] = FALSE; /* indicate departure from critical region =/

Peterson’s solution for achieving mutual exclusion.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1

CMP REGISTER.#0 | was lock zero?

JNE enter_region | if it was nonzero, lock was set, so loop

RET | return to caller; critical region entered
leave_region:

MOVE LOCK., #0 | store a 0 in lock

RET | return to caller

Entering and leaving a critical region using the TSL instruction.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

enter_region:

MOVE REGISTER, #1 | put a 1 in the register
XCHG REGISTER,LOCK | swap the contents of the register and lock variable
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop
RET | return to caller; critical region entered
leave _region:
MOVE LOCK, #0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the XCHG instruction

Sleep and Wakeup
The Producer-Consumer Problem

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

{
int item:;
while (TRUE) { [* repeat forever */
item = produce_item(); [* generate next item */
if (count == N) sleep(); [* if buffer is full, go to sleep */
insert_item(item); [* put item in buffer */
count = count + 1; /[* increment count of items in buffer */
if (count == 1) wakeup(consumer); [* was buffer empty? */
}
}

void consumer(void)

P -.-{-\;\;l'\."*-\f R i i o At N N N R R N LN R R N TN L N N N A N T I N N R R L N T o

The producer-consumer problem with a fatal race condition.

Sleep and Wakeup

The Producer-Consumer Problem

NS LTF LA e L] A A AP EITTSUT AN # o0 b WA S IGACY BATP Ly 12 4] 45 C 0 bl gt

}
}

void consumer(void)

{

int item;

while (TRUE) { /* repeat forever */
if (count == 0) sleep(); /* if buffer is empty, got to sleep */
item = remove_item(); /* take item out of buffer */
count = count — 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume_item(item); [* print item */

}

The producer-consumer problem with a fatal race condition.

Semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);
up(&full);

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

/* TRUE is the constant 1 */

/* generate something to put in buffer */
/* decrement empty count */

/* enter critical region */

/* put new item in buffer */

/* leave critical region */

/* increment count of full slots */

L fuﬁdﬂﬂﬂwwrﬂl@d} e R e N T R N A N]

The producer-consumer problem using semaphores.

Semaphores

T p &l T T i iRcrerment count of fall slots %77
}
}
void consumer(void)
{
int item;
while (TRUE) { /* infinite loop */
down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
item = remove_item(); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume_item(item); /* do something with the item */
}
}

The producer-consumer problem using semaphores.

Mutexes

mutex_lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_vyield | mutex is busy; schedule another thread
JMP mutex_lock | try again

ok: RET | return to caller; critical region entered

mutex_unlock:
MOVE MUTEX #0 | store a 0 in mutex
RET | return to caller

Implementation of mutex _lock and mutex_unlock.

Mutexes in Pthreads

Thread call

Description

Pthread_mutex_init

Create a mutex

Pthread_mutex_destroy

Destroy an existing mutex

Pthread_mutex_lock

Acquire a lock or block

Pthread_mutex_trylock

Acquire a lock or falil

Pthread_mutex_unlock

Release a lock

Some of the Pthreads calls relating to mutexes.

Mutexes in Pthreads

Thread call Description

Pthread_cond_init Create a condition variable
Pthread_cond_destroy Destroy a condition variable
Pthread_cond_wait Block waiting for a signal
Pthread_cond_signal Signal another thread and wake it up
Pthread_cond_broadcast | Signal multiple threads and wake all of them

Some of the Pthreads calls relating to condition variables.

Mutexes in Pthreads

#include <stdio.n=
#include <pthread.h>

#define MAX 1000000000 /* how many numbers to produce */
pthread_mutex_t the_mutex;

pthread_cond_t condc, condp; /* used for signaling */

int buffer = 0; /* buffer used between producer and consumer */
void *producer(void *ptr) /* produce data */

{ inth;

for (i=1; 1 <= MAX; I++) {
pthread_mutex_lock(&the_mutex); /* get exclusive access to buffer */
while (buffer != 0) pthread_cond_wait(&condp, &the_mutex);
buffer = i; /* put item in buffer */
pthread_cond_signal(&condc); /" wake up consumer */
pthread_mutex_unlock({&the_mutex); /* release access to buffer */

}
pthread_exit(0);
}

M EE e Lok S e g et gt g R b P ORI GRAR RN s g AL P FER b S

Using threads to solve the producer-consumer problem.

Mutexes in Pthreads

e F I ﬁ/“' Y ;Jvﬁwfw A CATEELT JE I Gl F TS A b g F G P F
pthread_exit(0);

void *consumer(void *ptr) M consume data */
{ int I;
for(i=1;1 ==MAX; I++) {

pthread_mutex_lock(&the_mutex); /* get exclusive access to buffer */
while {buffer ==0) pthread_cond_wait(&condc, &the_mutex);
buffer = 0; [take item out of buffer */
pthread_cond_signal(&condp); /™ wake up producer */
pthread_mutex_unlock(&the_mutex); /* release access to buffer */

}
pthread_exit(0);

}

int ITIEIFI (int ETJQG CI"IET **ar 'l.u"
Fon g

- ‘Mf Farty el g e B PO s p B g O L ot g e B a

Using threads to solve the producer-consumer problem.

Mutexes in Pthreads

SR - R (e e A e A

}

int main(int argc, char *argv)

{
pthread_t pro, con;
pthread_mutex_init(&the_mutex, 0);
pthread_cond_init{&condc, 0);
pthread_cond_init{&condp, 0);
pthread_create(&con, 0, consumer, 0);
pthread_create(&pro, 0, producer, 0);
pthread_join(pro, 0);
pthread_join(con, 0);
pthread_cond_destroy(&condc);
pthread_cond_destroy(&condp);
pthread_mutex_destroy(&the_mutex);

Using threads to solve the producer-consumer problem.

The Producer-Consumer Problem
with Message Passing

#define N 100 /* number of slots in the buffer */

void producer(void)

{
int item;
message m; /* message buffer =/
while (TRUE) {
item = produce_item(); /* generate something to put in buffer */
receive(consumer, &m); /* wait for an empty to arrive */
build_message(&m, item); /* construct a message to send */
send(consumer, &m); /* send item to consumer */
}
}

void consumer(void)

T T o T O e R R N N N R N N N Y T i Tt W Y]

The producer-consumer problem with N messages.

The Producer-Consumer Problem
with Message Passing

o d e b g OO pod pra gl B e b T e [O e g g O A e T a P e TR

send(consumer, &m); /* send item to consumer */
}

}

void consumer(void)

int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */
while (TRUE) {

receive(producer, &m); /* get message containing item */
item = extract_item(&m); /* extract item from message */
send(producer, &m); /* send back empty reply */
consume_item(item); /* do something with the item */

The producer-consumer problem with N messages.

The Dining Philosophers Problem

Lunch time in the Philosophy Department.

The Dining Philosophers Problem

#define N5 /* number of philosophers */

void philosopher(int i) /* i: philosopher number, from O to 4 */

{

while (TRUE) {

think(); /* philosopher is thinking */
take _fork(i); /* take left fork */
take _fork((i+1) % N); /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table */
put_fork((i+1) % N); /* put right fork back on the table */

A nonsolution to the dining philosophers problem.

The Dining Philosophers Problem

#define N 5

#define LEFT (i+N—1)%N
#define RIGHT (i+1)%N
#define THINKING 0

#define HUNGRY 1

#define EATING 2
typedef int semaphore;
int state[N];
semaphore mutex = 1;
semaphore s[N];

void philosopher(int i)

{

}

while (TRUE) {
think();
take_forks(i);
eat();
put_forks(i);

/* number of philosophers */

[* number of i's left neighbor */

/* number of i's right neighbor */

/* philosopher is thinking */

/* philosopher is trying to get forks */

[+ philosopher is eating */

/* semaphores are a special kind of int */
[* array to keep track of everyone’s state */
/* mutual exclusion for critical regions */

/* one semaphore per philosopher */

/[* i: philosopher number, from 0 to N-1 */

[* repeat forever */

/* philosopher is thinking */

[* acquire two forks or block */
[* yum-yum, spaghetti */

/* put both forks back on table */

B e - - T T T I T ATl S Tl S et e WA TE (P, WL P

A solution to the dining philosophers problem.

The Dining Philosophers Problem

T Forks(iy; < 7 ¥ plitbith forks back oh table %

}
}
void take_forks(int i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = HUNGRY; /* record fact that philosopher i is hungry */
test(i); [* try to acquire 2 forks */
up(&mutex); [* exit critical region */
down(&sli]); /* block if forks were not acquired */
}
void put_forks(i) /* I: philosopher number, from 0 to N-1 #/

b P, p R g R p b By o L g e bl e e 0 g g g BB g e 35 R sy o0 g B B e r 0 e P

A solution to the dining philosophers problem.

The Dining Philosophers Problem

B e s e i e R e L I Y= L A g Ll

}
void put_forks(i) /* i: philosopher number, from 0 to N-1 */
{
down(&mutex); /* enter critical region */
state[i] = THINKING; /* philosopher has finished eating */
test(LEFT); /* see if left neighbor can now eat */
test(RIGHT); /* see if right neighbor can now eat */
up(&mutex); /* exit critical region */
}
void test(i) /* i: philosopher number, from 0 to N-1 */
{
if (state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING) {
state[i] = EATING;
up(&sfi]);
}
}

A solution to the dining philosophers problem.

The Readers and Writers Problem

typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1;

int rc = 0;

void reader(void)
{
while (TRUE) {

down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc—1;
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

[* use your imagination */

/* controls access to rc’ */

/* controls access to the database */

[* # of processes reading or wanting to */

/* repeat forever */

/* get exclusive access to 'rc’ */

/* one reader more now */

/* if this is the first reader ... */

/* release exclusive access to rc’ */
/* access the data */

/* get exclusive access to 'rc’ */

/* one reader fewer now */

/* if this is the last reader ... */

/* release exclusive access to rc’ */
/* noncritical region */

AYOULWIHBIINCITN v s sss s o sht o st 220 o ot Jostn g g o o™t g

A solution to the readers and writers problem.

The Readers and Writers Problem

R i N il T I N R Tl ok a0 Y A W N N]

use_data_read(); /* noncritical region */
}
}
void writer(void)
{
while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write_data_base(); /* update the data */
up(&db); /* release exclusive access */
}
}

A solution to the readers and writers problem.

Summary

o Pipe

o Message Passing
o Shared Memory
o Race Condition

o Critical Region
Problem: Peterson’s
Solution

o Producer Consumer
Problem

o Semaphore
o Mutex

o The Dinning

Philosophers Problem

o The Readers and

Writers Problem

Next

Memory Management

— Address Space

— Memory allocation algorithms
— Swapping and compaction

— Virtual Memory

— Paging

