
CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• Inter Process Communications (IPC)
– Pipes

– Message Passing

– Shared Memory

• Process Synchronization
• Race Condition

• Critical Region Problem: Peterson’s Solution

• Producer Consumer Problem

• Semaphore

• Mutex

• The Dinning Philosophers Problem

• The Readers and Writers Problem

Inter Process Communication
 Processes within a system may be independent or

cooperating

 An Independent process cannot affect or be affected by the

execution of the other processes

 A Cooperating process can affect or be affected by the other

processes, including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication

(IPC)

Inter Process Communication

 Three models of IPC

 Pipe

 Message Queue

 Shared Memory

IPC: Pipe

 Pipe acts as a conduit allowing two processes

to communicate

 Ordinary pipes – cannot be accessed from

outside the process that created it. Typically, a

parent process creates a pipe and uses it to

communicate with a child process that it

created.

 Named pipes – can be accessed without a

parent-child relationship.

IPC: Pipe
 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes

IPC: Pipe

 Named Pipes are more powerful than ordinary

pipes

 No parent-child relationship is necessary

between the communicating processes

 Several processes can use the named pipe for

communication

 Communication is unidirectional in most of the

systems

 Provided on both UNIX and Windows systems

Message Queue

Message Queue

 Message queue has configurable internal structure

 size of each message

 size of the queue

 Provides two operations to the communicating processes

 send(message)

 receive(message)

 More than two processes can send and receive

 Send operation assigns a priority to each message

 Oldest message with the highest priority goes to the front of the
queue

 Receive operation gets and removes the front message from the
queue.

 A process can check the status of the queue.

Shared Memory

Shared Memory

 An area of memory shared among the
processes that wish to communicate

 The communication is under the control of
the users processes not the operating
system.

 Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory to avoid race condition.

Race Condition

• Race Condition: Undesirable data inconsistency in a shared memory due
to its simultaneous access by two or more processes.

• Critical Region: The code segment that causes race condition, i.e., that
accesses shared memory.

Requirements to avoid Race
Conditions

• No two processes may be simultaneously inside their
critical regions.

• No assumptions may be made about speeds or the
number of CPUs.

• A process running outside its critical region must not
block other processes.

• A process must not have to wait forever to enter its
critical region.

Critical Region Mutual Exclusion

Mutual Exclusion with Busy Waiting:
Strict Alternation

A proposed solution to the critical region problem.

(a) Process 0. (b) Process 1.

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

int process = 0;

while(TRUE) {

enter_region(0); //busy wait prcess 0

critical_region();

leave_region(0);

noncritical_region();

}

int process = 1;

while(TRUE) {

enter_region(1); //busy wait process 1

critical_region();

leave_region(1);

noncritical_region();

}

#define FALSE 0

#define TRUE 1

#define N 2

int turn = 0;

int interested[N] = {FALSE, FALSE};

void enter_region(int process) {

int other = 1 – process;

interested[process] = TRUE;

turn = process;

while (turn == process && interested[other] == TRUE); //busy wait

}

void leave_region(int process) {

interested[process] = FALSE;

}

Mutual Exclusion with Busy Waiting

Does not work, lock variable itself suffers from race condition.

#define LOCKED 1

#define UNLOCKED 0

int lock = UNLOCKED;

void enter_region(int process) {

while(lock == LOCKED); //busy wait while LOCKED

lock = LOCKED;

}

void leave_region (int process) {

lock = UNLOCKED; //UNLOCK

}

Entering and leaving a critical region using a lock variable.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

Entering and leaving a critical region using the TSL instruction.

Mutual Exclusion with Busy Waiting:
The XCHG Instruction

Entering and leaving a critical region using the XCHG instruction

Sleep and Wakeup
The Producer-Consumer Problem: Producer

• Race condition: count is shared with consumer but not mutually
excluded. insert_item() critical region not mutually excluded.

• Deadlock: wakeup signal from consumer gets lost if producer is
rescheduled before it executes sleep() function.

Sleep and Wakeup
The Producer-Consumer Problem: Consumer

• Race condition: count is shared with producer but not mutually
excluded. remove_item() critical region not mutually excluded.

• Deadlock: wakeup signal from producer gets lost if consumer is
rescheduled before it executes sleep() function.

Semaphores
The Producer-Consumer Problem: Producer

• No Race condition: no shared count with consumer. insert_item()
critical region is mutually excluded by semaphore mutex.

• Deadlock: up signal from consumer on semaphore empty is held if
producer is rescheduled before it executes down(&empty) function.

• No Race condition: no shared count with producer. remove_item()
critical region is mutually excluded by semaphore mutex.

• Deadlock: up signal from producer on semaphore full is held if
producer is rescheduled before it executes down(&full) function.

Semaphores
The Producer-Consumer Problem: Consumer

Mutexes: The TSL Instruction

Implementation of mutex_lock and mutex_unlock.

Mutexes in Pthread

Some of the pthreads calls relating to mutexes.

Function Description

pthread_mutex_init() Create a mutex

pthread_mutex_destroy() Destroy an existing mutex

pthread_mutex_lock() Acquire lock on a mutex or block yourself until succeed

pthread_mutex_trylock() Acquire a lock on a mutex or return immediately with an
error

pthread_mutex_unlock() Release a locked from a mutex.

https://man7.org/linux/man-pages/man3/pthread_mutex_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_destroy.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html

Conditions in Pthread

Some of the Pthreads calls relating to condition variables.

Function Description

pthread_cond_init() Create a condition variable

pthread_cond_destroy() Destroy an existing condition variable

pthread_cond_wait() Wait until a wake up signal is received

pthread_cond_signal() Signal a waiting thread to wake it up

pthread_cond_broadcast() Broadcast a signal to multiple waiting threads and wake
them up.

https://man7.org/linux/man-pages/man3/pthread_cond_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_wait.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_signal.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_broadcast.3p.html

Pthread Mutexes and Conditions
The Producer-Consumer Problem: Producer

Pthread Mutexes and Conditions
The Producer-Consumer Problem: Consumer

Pthread Mutexes and Conditions
The Producer-Consumer Problem

Message Queue
The Producer-Consumer Problem: Producer

The producer-consumer problem with N messages.

The producer-consumer problem with N messages.

Message Queue
The Producer-Consumer Problem: Consumer

The Dining Philosophers Problem

Lunch time in the Philosophy Department.

The Dining Philosophers Problem

A nonsolution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

Summary

oPipe

oMessage Passing

o Shared Memory

oRace Condition

oCritical Region
Problem: Peterson’s
Solution

oProducer Consumer
Problem

o Semaphore

oMutex

o The Dinning
Philosophers Problem

o The Readers and
Writers Problem

Next

– Address Space

– Memory allocation algorithms

– Swapping and compaction

– Virtual Memory

– Paging

Memory Management

