
CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• Inter Process Communications (IPC)
– Pipes

– Message Passing

– Shared Memory

• Process Synchronization
• Race Condition

• Critical Region Problem: Peterson’s Solution

• Producer Consumer Problem

• Semaphore

• Mutex

• The Dinning Philosophers Problem

• The Readers and Writers Problem

Inter Process Communication
 Processes within a system may be independent or

cooperating

 An Independent process cannot affect or be affected by the

execution of the other processes

 A Cooperating process can affect or be affected by the other

processes, including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication

(IPC)

Inter Process Communication

 Three models of IPC

 Pipe

 Message Queue

 Shared Memory

IPC: Pipe

 Pipe acts as a conduit allowing two processes

to communicate

 Ordinary pipes – cannot be accessed from

outside the process that created it. Typically, a

parent process creates a pipe and uses it to

communicate with a child process that it

created.

 Named pipes – can be accessed without a

parent-child relationship.

IPC: Pipe
 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes

IPC: Pipe

 Named Pipes are more powerful than ordinary

pipes

 No parent-child relationship is necessary

between the communicating processes

 Several processes can use the named pipe for

communication

 Communication is unidirectional in most of the

systems

 Provided on both UNIX and Windows systems

Message Queue

Message Queue

 Message queue has configurable internal structure

 size of each message

 size of the queue

 Provides two operations to the communicating processes

 send(message)

 receive(message)

 More than two processes can send and receive

 Send operation assigns a priority to each message

 Oldest message with the highest priority goes to the front of the
queue

 Receive operation gets and removes the front message from the
queue.

 A process can check the status of the queue.

Shared Memory

Shared Memory

 An area of memory shared among the
processes that wish to communicate

 The communication is under the control of
the users processes not the operating
system.

 Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory to avoid race condition.

Race Condition

• Race Condition: Undesirable data inconsistency in a shared memory due
to its simultaneous access by two or more processes.

• Critical Region: The code segment that causes race condition, i.e., that
accesses shared memory.

Requirements to avoid Race
Conditions

• No two processes may be simultaneously inside their
critical regions.

• No assumptions may be made about speeds or the
number of CPUs.

• A process running outside its critical region must not
block other processes.

• A process must not have to wait forever to enter its
critical region.

Critical Region Mutual Exclusion

Mutual Exclusion with Busy Waiting:
Strict Alternation

A proposed solution to the critical region problem.

(a) Process 0. (b) Process 1.

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

int process = 0;

while(TRUE) {

enter_region(0); //busy wait prcess 0

critical_region();

leave_region(0);

noncritical_region();

}

int process = 1;

while(TRUE) {

enter_region(1); //busy wait process 1

critical_region();

leave_region(1);

noncritical_region();

}

#define FALSE 0

#define TRUE 1

#define N 2

int turn = 0;

int interested[N] = {FALSE, FALSE};

void enter_region(int process) {

int other = 1 – process;

interested[process] = TRUE;

turn = process;

while (turn == process && interested[other] == TRUE); //busy wait

}

void leave_region(int process) {

interested[process] = FALSE;

}

Mutual Exclusion with Busy Waiting

Does not work, lock variable itself suffers from race condition.

#define LOCKED 1

#define UNLOCKED 0

int lock = UNLOCKED;

void enter_region(int process) {

while(lock == LOCKED); //busy wait while LOCKED

lock = LOCKED;

}

void leave_region (int process) {

lock = UNLOCKED; //UNLOCK

}

Entering and leaving a critical region using a lock variable.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

Entering and leaving a critical region using the TSL instruction.

Mutual Exclusion with Busy Waiting:
The XCHG Instruction

Entering and leaving a critical region using the XCHG instruction

Sleep and Wakeup
The Producer-Consumer Problem: Producer

• Race condition: count is shared with consumer but not mutually
excluded. insert_item() critical region not mutually excluded.

• Deadlock: wakeup signal from consumer gets lost if producer is
rescheduled before it executes sleep() function.

Sleep and Wakeup
The Producer-Consumer Problem: Consumer

• Race condition: count is shared with producer but not mutually
excluded. remove_item() critical region not mutually excluded.

• Deadlock: wakeup signal from producer gets lost if consumer is
rescheduled before it executes sleep() function.

Semaphores
The Producer-Consumer Problem: Producer

• No Race condition: no shared count with consumer. insert_item()
critical region is mutually excluded by semaphore mutex.

• Deadlock: up signal from consumer on semaphore empty is held if
producer is rescheduled before it executes down(&empty) function.

• No Race condition: no shared count with producer. remove_item()
critical region is mutually excluded by semaphore mutex.

• Deadlock: up signal from producer on semaphore full is held if
producer is rescheduled before it executes down(&full) function.

Semaphores
The Producer-Consumer Problem: Consumer

Mutexes: The TSL Instruction

Implementation of mutex_lock and mutex_unlock.

Mutexes in Pthread

Some of the pthreads calls relating to mutexes.

Function Description

pthread_mutex_init() Create a mutex

pthread_mutex_destroy() Destroy an existing mutex

pthread_mutex_lock() Acquire lock on a mutex or block yourself until succeed

pthread_mutex_trylock() Acquire a lock on a mutex or return immediately with an
error

pthread_mutex_unlock() Release a locked from a mutex.

https://man7.org/linux/man-pages/man3/pthread_mutex_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_destroy.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html
https://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html

Conditions in Pthread

Some of the Pthreads calls relating to condition variables.

Function Description

pthread_cond_init() Create a condition variable

pthread_cond_destroy() Destroy an existing condition variable

pthread_cond_wait() Wait until a wake up signal is received

pthread_cond_signal() Signal a waiting thread to wake it up

pthread_cond_broadcast() Broadcast a signal to multiple waiting threads and wake
them up.

https://man7.org/linux/man-pages/man3/pthread_cond_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_init.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_wait.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_signal.3p.html
https://man7.org/linux/man-pages/man3/pthread_cond_broadcast.3p.html

Pthread Mutexes and Conditions
The Producer-Consumer Problem: Producer

Pthread Mutexes and Conditions
The Producer-Consumer Problem: Consumer

Pthread Mutexes and Conditions
The Producer-Consumer Problem

Message Queue
The Producer-Consumer Problem: Producer

The producer-consumer problem with N messages.

The producer-consumer problem with N messages.

Message Queue
The Producer-Consumer Problem: Consumer

The Dining Philosophers Problem

Lunch time in the Philosophy Department.

The Dining Philosophers Problem

A nonsolution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

Summary

oPipe

oMessage Passing

o Shared Memory

oRace Condition

oCritical Region
Problem: Peterson’s
Solution

oProducer Consumer
Problem

o Semaphore

oMutex

o The Dinning
Philosophers Problem

o The Readers and
Writers Problem

Next

– Address Space

– Memory allocation algorithms

– Swapping and compaction

– Virtual Memory

– Paging

Memory Management

