
CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• Inter Process Communications (IPC)
– Pipes

– Message Passing

– Shared Memory

• Process Synchronization
• Race Condition

• Critical Region Problem: Peterson’s Solution

• Producer Consumer Problem

• Semaphore

• Mutex

• The Dinning Philosophers Problem

• The Readers and Writers Problem

Inter Process Communication
 Processes within a system may be independent or

cooperating

 Independent process cannot affect or be affected by the

execution of another process

 Cooperating process can affect or be affected by other

processes, including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication

(IPC)

Inter Process Communication

 Three models of IPC

 Pipe

 Shared Memory

 Message Passing (Message Queue)

IPC: Pipe

 Pipe acts as a conduit allowing two processes

to communicate

 Ordinary pipes – cannot be accessed from

outside the process that created it. Typically, a

parent process creates a pipe and uses it to

communicate with a child process that it

created.

 Named pipes – can be accessed without a

parent-child relationship.

IPC: Pipe
 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes

IPC: Pipe

 Named Pipes are more powerful than ordinary

pipes

 No parent-child relationship is necessary

between the communicating processes

 Several processes can use the named pipe for

communication

 Communication is unidirectional in most of the

systems

 Provided on both UNIX and Windows systems

Message Queue

Message Queue

 Message queue has configurable internal structure

 size of each message

 size of the queue

 Provides two operations to the communicating processes

 send(message)

 receive(message)

 More than two processes can send and receive

 Send operation assigns a priority to each message

 Oldest message with the highest priority goes to the front of the
queue

 Receive operation gets and removes the front message from the
queue.

 A process can check the status of the queue.

Shared Memory

Shared Memory

 An area of memory shared among the
processes that wish to communicate

 The communication is under the control of
the users processes not the operating
system.

 Major issues is to provide mechanism that
will allow the user processes to synchronize
their actions when they access shared
memory.

Race Condition

Two processes want to access
shared memory at the same time.

Critical Regions

Requirements to avoid race conditions:

• No two processes may be simultaneously inside their
critical regions.

• No assumptions may be made about speeds or the
number of CPUs.

• No process running outside its critical region may
block other processes.

• No process should have to wait forever to enter its
critical region.

Critical Regions

Mutual exclusion using critical regions.

Mutual Exclusion with Busy Waiting:
Strict Alternation

A proposed solution to the critical region problem.

(a) Process 0. (b) Process 1.

Mutual Exclusion with Busy Waiting:
Peterson’s Solution

Peterson’s solution for achieving mutual exclusion.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

Entering and leaving a critical region using the TSL instruction.

Mutual Exclusion with Busy Waiting:
The TSL Instruction

Entering and leaving a critical region using the XCHG instruction

Sleep and Wakeup
The Producer-Consumer Problem

The producer-consumer problem with a fatal race condition.

Sleep and Wakeup
The Producer-Consumer Problem

The producer-consumer problem with a fatal race condition.

Semaphores

The producer-consumer problem using semaphores.

Semaphores

The producer-consumer problem using semaphores.

Mutexes

Implementation of mutex_lock and mutex_unlock.

Mutexes in Pthreads

Some of the Pthreads calls relating to mutexes.

Mutexes in Pthreads

Some of the Pthreads calls relating to condition variables.

Mutexes in Pthreads

Using threads to solve the producer-consumer problem.

Mutexes in Pthreads

Using threads to solve the producer-consumer problem.

Mutexes in Pthreads

Using threads to solve the producer-consumer problem.

The Producer-Consumer Problem
with Message Passing

The producer-consumer problem with N messages.

The Producer-Consumer Problem
with Message Passing

The producer-consumer problem with N messages.

The Dining Philosophers Problem

Lunch time in the Philosophy Department.

The Dining Philosophers Problem

A nonsolution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Dining Philosophers Problem

A solution to the dining philosophers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

The Readers and Writers Problem

A solution to the readers and writers problem.

Summary

oPipe

oMessage Passing

o Shared Memory

oRace Condition

oCritical Region
Problem: Peterson’s
Solution

oProducer Consumer
Problem

o Semaphore

oMutex

o The Dinning
Philosophers Problem

o The Readers and
Writers Problem

Next

– Address Space

– Memory allocation algorithms

– Swapping and compaction

– Virtual Memory

– Paging

Memory Management

