CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

* Process
e Thread

* Process Scheduling
o First-Come First-Served
o Shortest Job First
o Shortest Remaining Time Next
o Round Robin Scheduling
o Priority Scheduling
o Multiple Queues Scheduling

Process Abstraction

* A process is an abstraction of a running
program.

* Execution of a program starts via GUI

mouse clicks or command line entry of
Its name.

* One program can be several processes.

Process Abstraction

* A program becomes a process when
the executable code is loaded into
memory and starts running.

* Process execution progress in

sequential fashion from the beginning
to the end of the code.

* A process has more parts other than
the code.

Process Abstraction

* A process has following parts.
— The program code, called text section

— Current activity represented by program
counter and processor registers

— Stack to hold temporary data

* return addresses, function parameters, and
local variables

— Data section to hold global variables

— Heap to hold dynamically allocated
variables during run time

Process Abstraction

max
stack
heap
data
text
0

Process Operations: Creation

Four principal events that cause processes to be
created:

e System initialization.

e Execution of a process creation system call by
a running process.

* A user request to create a new process.
* |nitiation of a batch job.

Process Operations: Termination

Typical conditions which terminate a process:
 Normal exit (voluntary).

* Error exit (voluntary).

e Fatal error (involuntary).

* Killed by another process (involuntary).

Process States

Three states a process may be in:
* Running (actually using the CPU at that instant).

* Ready (runnable; temporarily stopped to let
another process run).

* Blocked (unable to run until some external event
happens).

Process States

1. Process blocks for input
2. Scheduler picks another process

3. Scheduler picks this process
4. Input becomes available

Process Control Block

Each process is process state
represented In the process number
OS by a process program counter

control block,
which holds the

reqgisters

information related memory limits

to the process list of open files

Process Control Block

Information in process control block

Process state — ready, running, blocked
Program counter — location of instruction to execute next
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers

Memory-management information — memory allocated to the
process

Accounting information — CPU used, clock time elapsed since
start, time limits

/O status information — I/O devices allocated to process, list
of open files

Process Control Block

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment info
Pointer to data segment info
Pointer to stack segment info

File management
Root directory
Working directory
File descriptors
User ID

Group ID

g o

Keyboard

Thread

Faar sonre and wven
veaTl ago, oar Dehen
brraghs Sk apan dhe
CONTRNE & W R
concEved m Eharmy
md dedcaid ot
propontes tar &l
EHG e crested agusl
FER W A 0 g
o gt ol war
g whether S

Sadicam & pormon of
tha Tkl & 8 flasd
ey placa for Se
wha bam gave dheir

livm chat thin nstoon|
might live. & s
ahogebar fimng and
proper Sl e ahould)
do dan

T, s n L mamms,
Wl SRR R, A
IO DON TN WA
cagsce Walom thig
grond The B
man, lving mad dead,

whe Teggled Bar
bave onm secred 11, b
above A poor power
w wdd or Sewmcr Tha)
warld will lidhs nois,
war lng remssber,
whE Wy s, b
it cmn meew forge
whit Sy il b

H b o 1 eha Irving,
i, b dackoamed

e o thi aafzichad
work which they wha
fught bar have fum
i ao pobly achvasod
H i rafhar for o o be
bars declicared w tha
FETa T TR T]
Seform we, that from
Seti bomornd diad
uki oreamd dewnon
w0 thar catsea dor whech

E———T]
T of Sevomon,
that ww bare highly
TR A S i
shall pe baen Sad =
wmn et weson,
ander Chd, whall v
& b b of Fresdon
Mad B pEEETOREE Of
1 paople by e
pacpla, for S poop

T

Kernel

A word processor with three threads.

Disk

Thread

Web server process

Dispatcher thread

Worker thread

Web page cache

Kernel

Network
connection

A multithreaded Web server.

User
> space

Kernel
space

Thread

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);
}
(a) (b)

A rough outline of the code for
(a) Dispatcher thread. (b) Worker thread.

Thread

Model Characteristics

Threads Parallelism, blocking system calls
Single-threaded process No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server.

Thread

Process 1 Process 2 Process 3 Process

\ \ | |

\ | |

User)
space

Thread Thread

Kernel
space j

—

Kernel Kernel

(2) (b)

(a) Three processes each with one thread.
(b) One process with three threads.

Thread

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

The first column lists some items shared by all threads in a
process. The second one lists some items private to each
thread.

Thread

Thread 2

Thread 1 Thread 3

_—Process

/

Thread 1's Thread 3's stack

stack

Kernel

Each thread has its own stack.

POSIX Thread

Thread call Description

Pthread_create Create a new thread

Pthread_exit Terminate the calling thread

Pthread_join Wait for a specific thread to exit

Pthread_vyield Release the CPU to let another thread run
Pthread_attr_init Create and initialize a thread'’s attribute structure
Pthread_attr_destroy | Remove a thread’s atiribute structure

Some of the Pthreads function calls.

POSIX Thread

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUMBER_OF_THREADS 10

void *print_hello_world(void *tid)

{
/* This function prints the thread’s identifier and then exits. */
printf("Hello World. Greetings from thread %d\n", tid);
pthread_exit(NULL);

}

int main(int arge, char *argv[])

{

/* The main program creates 10 threads and then exits. */
pthread_t threads[NUMBER_OF_THREADS];
int status, I;

for(i=0; i <t NUMBER_OF_THREADS; i++) {
printf("Main here. Creating thread %d\n", i);

nrnrnnpinen SIS = PiIGRd cregte(Sthreadsh], NULL, print,.hello,world. {void *)i);

An example program using threads.

POSIX Thread

T ‘4ﬂf“§¥3mﬂ': I';; e i T I i P N T L A Al SN R R i W Y T L o

for(i=0; i <« NUMBER_OF_THREADS; i++) {
printf("Main here. Creating thread %d\n", i);
status = pthread_create(&threads][i], NULL, print_hello_world, (void *)i);

if (status 1= 0) {
printf("Oops. pthread_create returned error code %d\n", status);
exit(-1);
}
}
exit(NULL);

An example program using threads.

User Threads and Kernel Threads

User threads - management done by user-level threads library
Three primary thread libraries:

— POSIX Pthreads
— Windows threads
— Java threads

Kernel threads - Supported by the Kernel

Examples — virtually all general purpose operating systems, including:
— Windows

— Solaris

— Linux

— Tru64 UNIX

— Mac OS X

Multithreading Models

* Many-to-One
* One-to-One

* Many-to-Many

Many-to-One

Many user-level threads mapped to

<«— user thread

Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time

single kernel thread
One thread blocking causes all to block ; ; ; ;

Few systems currently use this model

Examples:
— Solaris Green Threads
— GNU Portable Threads

<«— kernel thread

One-to-One

Each user-level thread maps to
kernel thread

Creating a user-level thread
creates a kernel thread

More concurrency than many-
to-one

Number of threads per process
sometimes restricted due to
overhead
Examples

— Windows

— Linux

— Solaris 9 and later

N
006

g «— user thread

@ <«—kernel thread

Many-to-Many Model

Allows many user level threads to g ;
be mapped to many kernel g
threads

Allows the operating system to
create a sufficient number of
kernel threads

;<— user thread

Solaris prior to version 9

Windows with the ThreadFiber
package <« kernel thread

Process Scheduling

Modern OS allows multiple processes even on a single CPU.
CPUs are time-shared among the processes.

A process scheduler shares the CPUs among the processes in a
seamless way.

Maximum CPU utilization obtained with multiprocessing

Process

» 0 O O

Time —

(c)

Process Scheduling

B Process execution oad store
consists of a cycle of read from fle R
CPU execution and /O 1
W ai t wait for I/O /O burst
store increment
B CPU burst followed by e e CPU burst
/O burst o 10 buret
B CPU Dburst distribution is
of main concern atd sore GPU burs

read from file

wait for I/O I/O burst

Process Scheduling

(a) | — — —— |
Long CPU burst \
Waiting for /O
Short CPU burst \
(b) [{1 (] I —1 L —] [——1
Time
—

Bursts of CPU usage alternate with periods of waiting for I/0O. (a) A
CPU-bound process. (b) An I/O-bound process.

Process Scheduling

B Process scheduler maintains scheduling queues of
processes

e Ready queue — set of all processes residing in main
memory, ready and waiting to execute

e Device queues or I/O gueues — set of processes
waiting for an I/O device

B Process scheduler selects among available processes
for next execution on CPU

B Processes migrate among the various queues

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit O

Process Scheduling

tail

1

queue header PCB, PCB,

head =

tail registers registers
head +T——=

taill +——=
head +———=

T PCB, PCB,,4 PCBg

/ B
head 4
PCB;

head —

Process Scheduling

®m Queueing diagram represents queues, resources, flows

Scheduled and dispatched
* I Ready Queue

/O requested

Interrupt occured

Time slice expired

PR Forked a child process

Process Scheduling

Scheduler selects from among the processes in ready queue, and
allocates the CPU to one of them

® Queue may be ordered in various ways
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive
® Upon expiration of the time slice of a process

® When interrupt occurs

Process Scheduling

Dispatcher module gives the control of the CPU to the
process selected by the scheduler; this involves:

e switching context
e switching to user mode

e jumping to the proper location in the user program to
restart that program

Dispatch latency — time it takes for the dispatcher to stop
one process and start another running

Process Scheduling: Context Switch

®m When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

m Context of a process represented in the PCB

process P, operating system process P,
executing //
. v
interrupt M ‘ save state into PCB, ‘
: idle

‘reload state from PCB1‘

- idle executing
[\ interrupt
‘ save state into PCB, ‘
. idle
) ‘reload state from PCBO‘

Process Scheduling: Context Switch

m Context-switch time is overhead; the system does no useful
work while switching

e The more complex the OS and the PCB =>» the longer the
context switch

B Time dependent on hardware support

e Some hardware provides multiple sets of registers per CPU
=> multiple contexts loaded at once

Process Scheduling

Categories of Algorithms

e Batch.
* |nteractive.

e Real time.

Process Scheduling: Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Process Scheduling: Batch Systems

* First-Come First-Served
e Shortest Job First
* Shortest Remaining Time Next

Process Scheduling: Interactive
Systems

* Round-Robin Scheduling
* Priority Scheduling
 Multiple Queues

* Shortest Process Next

* Guaranteed Scheduling
* Lottery Scheduling

* Fair-Share Scheduling

Process Scheduling: FCFS

Process Burst Time
P, 24
P, 3
P, 3

Suppose that the processes arrive in the order: P, , P, , Py
The Gantt Chart for the schedule is:

0 24

Waiting time for P, =0; P, =24; P;=27
Average waiting time: (0 + 24 + 27)/3 =17
Turnaround time for P, =24; P, =27; P,=30
Average turnaround time: (24 + 27+30)/3 = 27

27

30

Process Scheduling: FCFS

Suppose that the processes arrive in the order:

I:)2 ' P3) Pl
The Gantt chart for the schedule is:

Waiting time for P, =6; P, =0.P;=3
Average waiting time: (6 + 0+ 3)/3=3
Turnaround time for P, =30;P, =3.P;=6
Average turnaround time: (30 + 3 +6)/3 =13
Much better than previous case
Convoy effect - short process behind long process
e Consider one CPU-bound and many I/O-bound processes

30

Process Scheduling: SJIF

m Associate with each process the length of its next CPU burst

e Use these lengths to schedule the process with the shortest
time

m SJF is optimal — gives minimum average waiting time for a given
set of processes

e The difficulty is knowing the length of the next CPU request
e Could ask the user

Process Scheduling: SJIF

Process Burst Time
P, 6
P, 8
Ps 7
P, 3

B Average waitingtime=(3+16+9+0)/4=7
m Average turnaround time =(9 +24 +16 + 3) /4 =13

24

Process Scheduling: SRTF

Now we add the concepts of varying arrival times and preemption to the
analysis

Process Arrival Time Burst Time
= 0 8
P, 1 4
P, 2 9
P, 3 5

0 1 5 10 17 26
Average waiting time = [(0-0)+(1-1)+(17-2)+(5-3)]/4 = 17/4 = 4.25 msec
Average turnaround time = [(17-0)+(5-1)+(26-2)+(10-3)]/4 = 52/4 = 13 msec

Process Scheduling: Priority

®m A priority number (integer) is associated with each process

®m The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

e Preemptive
e Nonpreemptive

m SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

B Problem = Starvation — low priority processes may never execute

m Solution = Aging — as time progresses increase the priority of the
process

Process Scheduling: Priority

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
P, 5 2

®m Priority scheduling Gantt Chart

P, P P, P, |P,

0 1 6 16 18 19

B Average waiting time (6+0+16+18+1)/5 = 41/5 = 8.2 msec
m Average turnaround time (16+1+18+19+6)/5 = 60/5 = 12 msec

Process Scheduling: RR

Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more
than (n-1)q time units.

Timer interrupts every quantum to schedule next process
Performance
e ¢large = FIFO

e ¢ small = q must be large with respect to context switch,
otherwise overhead is too high

Process Scheduling: RR

Process Burst Time
P, 24
P, 3
P, 3

Average waiting time (0+4+7) = 11/3 = 3.67 msec

Average turnaround time (30+7+10) = 47/3 = 15.67 msec

Typically, higher average turnaround than SJF, but better response
g should be large compared to context switch time

g usually 10ms to 100ms, context switch < 10 usec

Process Scheduling: RR

process time = 10 quantum context
switches
12 0
10
6 1
6 10
1 9

Process Scheduling: RR

process | time

12.5

12.0 Ps
Ps
115 P,

N = W

()

£ 11

E 110/\ \

s Y \

g 105 >

=

¢ 10.0

g 80% of CPU bursts

= 95 should be shorter than g
9.0

1 2 3 4 5 6 T
time quantum

Process Scheduling: Multiple Queue

Ready queue is partitioned into separate queues, eg:
e foreground (interactive)
e background (batch)
Process permanently in a given queue
Each queue has its own scheduling algorithm:
e foreground — RR
e background — FCFS
Scheduling must be done between the queues:

e Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

e Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

e 20% to background in FCFS

Process Scheduling: Multiple Queue

highest priority

— student processes m— .

lowest priority

Process Scheduling: SPN

Predict the length of a CPU burst— Then pick the process with
shortest predicted next CPU burst

Can be done by using the length of previous CPU bursts, using
exponential averaging
1. t, = actual length of n'" CPU burst

2. 7,41 =predicted value for the next CPU burst
3. ,0<a<l
4. Define: Tntl = Q by + (1 —)Ty

Commonly, a set to %2

Process Scheduling: SPN

CPU burst (1) 6 4 6 4 13 13 13

"guess" (t) 10 8 6 6 5 9 11 12

Process Scheduling: SPN

o =0
® Thi1 = Ty
e Recent history does not count
o =1
* T =at,
e Only the actual last CPU burst counts
If we expand the formula, we get:
Ty —ot+l-a)at, ;+ ...
+H(1-aYot, ;+...
+(1-a)" 1

Since both o and (1 -) are less than or equal to 1, each
successive term has less weight than its predecessor

Process Scheduling: GS

In Guaranteed Scheduling, if n processes are running,
each one is entitled to get 1/n of the CPU cycles.

Keeps track of how much CPU cycles each process has had
since its creation.

Computes the ratio of actual CPU time consumed to CPU
time entitled to.

Runs the process with the lowest ratio until its ratio has
moved above that of its closest competitor.

Process Scheduling: LS

Lottery Scheduling gives processes lottery tickets for CPU
time.

Whenever a scheduling decision has to be made, a lottery
ticket is chosen at random, and the process holding that
ticket gets the CPU.

Scheduler might hold a lottery 50 times a second, with
each winner getting 20 msec of CPU time as a prize.

More important processes can be given extra tickets, to
increase their odds of winning.

A process holding a fraction f of the tickets will get about
a fraction f of the CPU share.

Process Scheduling: FSS

Fair-Share Scheduling takes into account which user
owns a process before scheduling it.

Each user is allocated some fraction of the CPU.

Scheduler picks processes in such a way as to enforce the
share.

If two users have each been promised 50% of the CPU,
they will each get that, no matter how many processes
they have in existence.

Process Scheduling: FSS

User 1 has four processes, A, B, C, and D, and user 2 has only
one process, L.

If round-robin scheduling is used, a possible scheduling
sequence is this:
— ABCDE|ABCDE|ABCDE...

If user 1 is entitled to as much CPU time as user 2, FSS
scheduling sequence is this:
— AE|BE|CE|DE|AE|BE|CE|DE...

If user 1 is entitled to twice as much CPU time as user 2, FSS
scheduling sequence is this:
— ABE|CDE|ABE|CDE...

Summary

o Process
o Process States

o Process Control Block

o Thread
o Process Scheduling
o Context Switch

o First-Come First-
Served

o Shortest Job First

o Shortest Remaining
Time Next

o Round Robin
Scheduling

o Priority Scheduling

o Multiple Queues
Scheduling

Next

Process Management

— Inter Process Communications (IPC)
— Process Synchronization

