
CSCI 360
Introduction to Operating Systems

Process Management

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

• Process

• Thread

• Process Scheduling

o First-Come First-Served

o Shortest Job First

o Shortest Remaining Time Next

oRound Robin Scheduling

oPriority Scheduling

oMultiple Queues Scheduling

Process Abstraction

• A process is an abstraction of a running
program.

• Execution of a program starts via GUI
mouse clicks or command line entry of
its name.

• One program can be several processes.

Process Abstraction

• A program becomes a process when
the executable code is loaded into
memory and starts running.

• Process execution progress in
sequential fashion from the beginning
to the end of the code.

• A process has more parts other than
the code.

Process Abstraction

• A process has following parts.

– The program code, called text section

– Current activity represented by program
counter and processor registers

– Stack to hold temporary data

• return addresses, function parameters, and
local variables

– Data section to hold global variables

– Heap to hold dynamically allocated
variables during run time

Process Abstraction

Process Operations: Creation

Four principal events that cause processes to be
created:

• System initialization.

• Execution of a process creation system call by
a running process.

• A user request to create a new process.

• Initiation of a batch job.

Process Operations: Termination

Typical conditions which terminate a process:

• Normal exit (voluntary).

• Error exit (voluntary).

• Fatal error (involuntary).

• Killed by another process (involuntary).

Process States

Three states a process may be in:

• Running (actually using the CPU at that instant).

• Ready (runnable; temporarily stopped to let
another process run).

• Blocked (unable to run until some external event
happens).

Process States

Process Control Block

Each process is

represented in the

OS by a process

control block,

which holds the

information related

to the process

Process Control Block

Information in process control block
 Process state – ready, running, blocked

 Program counter – location of instruction to execute next

 CPU registers – contents of all process-centric registers

 CPU scheduling information- priorities, scheduling queue

pointers

 Memory-management information – memory allocated to the

process

 Accounting information – CPU used, clock time elapsed since

start, time limits

 I/O status information – I/O devices allocated to process, list

of open files

Process Control Block

Thread

A word processor with three threads.

Thread

A multithreaded Web server.

Thread

A rough outline of the code for
(a) Dispatcher thread. (b) Worker thread.

Thread

Three ways to construct a server.

Thread

(a) Three processes each with one thread.
(b) One process with three threads.

Thread

The first column lists some items shared by all threads in a
process. The second one lists some items private to each

thread.

Thread

Each thread has its own stack.

POSIX Thread

Some of the Pthreads function calls.

POSIX Thread

An example program using threads.

POSIX Thread

An example program using threads.

User Threads and Kernel Threads

• User threads - management done by user-level threads library

• Three primary thread libraries:

– POSIX Pthreads

– Windows threads

– Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems, including:

– Windows

– Solaris

– Linux

– Tru64 UNIX

– Mac OS X

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Many-to-One

• Many user-level threads mapped to
single kernel thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time

• Few systems currently use this model

• Examples:

– Solaris Green Threads

– GNU Portable Threads

One-to-One
• Each user-level thread maps to

kernel thread

• Creating a user-level thread
creates a kernel thread

• More concurrency than many-
to-one

• Number of threads per process
sometimes restricted due to
overhead

• Examples

– Windows

– Linux

– Solaris 9 and later

Many-to-Many Model

• Allows many user level threads to
be mapped to many kernel
threads

• Allows the operating system to
create a sufficient number of
kernel threads

• Solaris prior to version 9

• Windows with the ThreadFiber
package

Process Scheduling

• Modern OS allows multiple processes even on a single CPU.

• CPUs are time-shared among the processes.

• A process scheduler shares the CPUs among the processes in a
seamless way.

• Maximum CPU utilization obtained with multiprocessing

Process Scheduling

 Process execution

consists of a cycle of

CPU execution and I/O

wait

 CPU burst followed by

I/O burst

 CPU burst distribution is

of main concern

Process Scheduling

Bursts of CPU usage alternate with periods of waiting for I/O. (a) A
CPU-bound process. (b) An I/O-bound process.

Process Scheduling

 Process scheduler maintains scheduling queues of

processes

 Ready queue – set of all processes residing in main

memory, ready and waiting to execute

 Device queues or I/O queues – set of processes

waiting for an I/O device

 Process scheduler selects among available processes

for next execution on CPU

 Processes migrate among the various queues

Process Scheduling

Process Scheduling
 Queueing diagram represents queues, resources, flows

CPUReady Queue

I/O Queues

Scheduled and dispatched

I/O requested

Time slice expired

Forked a child process

Interrupt occured

I/O
Devices

PR

PR

Process Scheduling
 Scheduler selects from among the processes in ready queue, and

allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

 Upon expiration of the time slice of a process

 When interrupt occurs

Process Scheduling

 Dispatcher module gives the control of the CPU to the

process selected by the scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to

restart that program

 Dispatch latency – time it takes for the dispatcher to stop

one process and start another running

Process Scheduling: Context Switch

 When CPU switches to another process, the system must save

the state of the old process and load the saved state for the

new process via a context switch

 Context of a process represented in the PCB

Process Scheduling: Context Switch

 Context-switch time is overhead; the system does no useful

work while switching

 The more complex the OS and the PCB  the longer the

context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU

 multiple contexts loaded at once

• Batch.

• Interactive.

• Real time.

Process Scheduling

Categories of Algorithms

Process Scheduling: Algorithm Goals

Process Scheduling: Batch Systems

• First-Come First-Served

• Shortest Job First

• Shortest Remaining Time Next

Process Scheduling: Interactive
Systems

• Round-Robin Scheduling

• Priority Scheduling

• Multiple Queues

• Shortest Process Next

• Guaranteed Scheduling

• Lottery Scheduling

• Fair-Share Scheduling

Process Scheduling: FCFS
Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

 Turnaround time for P1 = 24; P2 = 27; P3 = 30

 Average turnaround time: (24 + 27+30)/3 = 27

P P P
1 2 3

0 24 3027

Process Scheduling: FCFS
Suppose that the processes arrive in the order:

P2 , P3 , P1

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time: (6 + 0 + 3)/3 = 3

 Turnaround time for P1 = 30; P2 = 3; P3 = 6

 Average turnaround time: (30 + 3 + 6)/3 = 13

 Much better than previous case

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

Process Scheduling: SJF

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest

time

 SJF is optimal – gives minimum average waiting time for a given

set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

Process Scheduling: SJF
ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

 Average turnaround time = (9 + 24 +16 + 3) / 4 = 13

P
3

0 3 24

P
4

P
1

169

P
2

Process Scheduling: SRTF
 Now we add the concepts of varying arrival times and preemption to the

analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(0-0)+(1-1)+(17-2)+(5-3)]/4 = 17/4 = 4.25 msec

 Average turnaround time = [(17–0)+(5-1)+(26-2)+(10-3)]/4 = 52/4 = 13 msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

Process Scheduling: Priority

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

Process Scheduling: Priority
ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time (6+0+16+18+1)/5 = 41/5 = 8.2 msec

 Average turnaround time (16+1+18+19+6)/5 = 60/5 = 12 msec

Process Scheduling: RR

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch,

otherwise overhead is too high

Process Scheduling: RR
Process Burst Time

P1 24

P2 3

P3 3

 The Gantt chart for 4 msec time quanta is:

 Average waiting time (0+4+7) = 11/3 = 3.67 msec

 Average turnaround time (30+7+10) = 47/3 = 15.67 msec

 Typically, higher average turnaround than SJF, but better response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 usec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

Process Scheduling: RR

Process Scheduling: RR

80% of CPU bursts
should be shorter than q

Process Scheduling: Multiple Queue
 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

Process Scheduling: Multiple Queue

Process Scheduling: SPN
 Predict the length of a CPU burst– Then pick the process with

shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using

exponential averaging

 Commonly, α set to ½

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.











 1n

th
n nt

Process Scheduling: SPN

Process Scheduling: SPN

  =0

 n+1 = n

 Recent history does not count

  =1

 n+1 =  tn

 Only the actual last CPU burst counts

 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each
successive term has less weight than its predecessor

Process Scheduling: GS

• In Guaranteed Scheduling, if n processes are running,
each one is entitled to get 1/n of the CPU cycles.

• Keeps track of how much CPU cycles each process has had
since its creation.

• Computes the ratio of actual CPU time consumed to CPU
time entitled to.

• Runs the process with the lowest ratio until its ratio has
moved above that of its closest competitor.

Process Scheduling: LS

• Lottery Scheduling gives processes lottery tickets for CPU
time.

• Whenever a scheduling decision has to be made, a lottery
ticket is chosen at random, and the process holding that
ticket gets the CPU.

• Scheduler might hold a lottery 50 times a second, with
each winner getting 20 msec of CPU time as a prize.

• More important processes can be given extra tickets, to
increase their odds of winning.

• A process holding a fraction f of the tickets will get about
a fraction f of the CPU share.

Process Scheduling: FSS

• Fair-Share Scheduling takes into account which user
owns a process before scheduling it.

• Each user is allocated some fraction of the CPU.

• Scheduler picks processes in such a way as to enforce the
share.

• If two users have each been promised 50% of the CPU,
they will each get that, no matter how many processes
they have in existence.

Process Scheduling: FSS

• User 1 has four processes, A, B, C, and D, and user 2 has only
one process, E.

• If round-robin scheduling is used, a possible scheduling
sequence is this:
– A B C D E | A B C D E | A B C D E ...

• If user 1 is entitled to as much CPU time as user 2, FSS
scheduling sequence is this:
– A E | B E | C E | D E | A E | B E | C E | D E ...

• If user 1 is entitled to twice as much CPU time as user 2, FSS
scheduling sequence is this:
– A B E | C D E | A B E | C D E ...

Summary

oProcess

oProcess States

oProcess Control Block

o Thread

oProcess Scheduling

oContext Switch

o First-Come First-
Served

o Shortest Job First

o Shortest Remaining
Time Next

oRound Robin
Scheduling

oPriority Scheduling

oMultiple Queues
Scheduling

Next

– Inter Process Communications (IPC)

– Process Synchronization

Process Management

