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What is an Operating System?

Unix, FreeBSD (UC Berkeley Unix)
Minix, Mach, L4

Linux

Mac OS X

Windows

Android

I0S
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What is an Operating System?

* A system software that acts as an intermediary
between the application software and computer

hardware
* Operating System:
— Executes application software.

— Provides system level services to the application
software.

— Provides convenience to the application software
developers.

— Controls and enables efficient usage of system
hardware.
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Operating System Roles

 Two important roles:

—Provides a nice abstraction around the
hardware or extend the machine.

—Manage the hardware resources.



OS Roles: Extended Machine

 Computer architecture at low level is
primitive and awkward to program.

* Application programmers do not want to get
too intimately involved at low level.

* Application programmers want simple and
high-level abstraction of the architecture to
deal with.



OS Roles: Extended Machine

* Operating system hides the complex
hardware and presents nice, clean, elegant,
consistent abstractions to work with.
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OS Roles: Resource Manager

* Provides orderly, controlled allocation of
resources

— Keeps track which programs are using which
resources.

— Grants resource requests and accounts resource
usage.

— Mediate conflicting resource requests.

 Shares resources
— Time and space multiplexing



Operating System Components

Process Dispatcher Inter Process Trap and
Scheduler P Communication Interrupt
Memory Network
Managment System
USB Driver Dlsplay Network
Drlver Drlver

e Consists of many components and each component
performs specific tasks.

* Will learn details about followings components:
— Process Management System
— Memory Management System
— File System
— 1/0 System



Operating System Modes
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Operating System Modes

 Dual-mode (user mode and kernel mode)
operation allows OS to protect itself and
other system components

— OS runs in kernel mode, has complete access
to all the hardware and can execute all
instructions, including privileged ones.

— Other Programs run in User mode, cannot
access the hardware directly and cannot run
privileged instructions.

— Programs in User mode, can indirectly access
hardware and execute privileged instructions
through system calls.



Operating System Modes

* System call changes mode to kernel, return
from call resets it to user

* Mode bit provided by hardware, gives the
ability to distinguish when system is
running user code or kernel code

user process

user mode
user process executing — calls system call return from system call (mode bit=1)
\ /
LY V4
\ V4
K I trap return
il mode bit = 0 mode bit = 1
kernel mode

execute system call (mode bit = 0)




User Space

Hardware

Kernel Space

Application Program

System Calls

PC -> stack

size -> stack

size_t count = read(fd, &buffer, size);

fd -> stack

&buffer -> stack

System Call User Space Routine

v

Call TRAP (syscall)

A

PC <- stack

PC <- stack

mode(PSW) <- user

Call RET 4

syscall# -> register

h 4

mode(PSW) <- kernel
PC -> stack
Call TRAP handler(syscall)

TRAP Handler
Kernel Space
Routine

Syscall Kernel
Space Routine

Call syscall kernel routine

4

h

Call IRET
PC -> stack PC <- stack
v
Retrieve syscall# from register
Find read service routine from
syscall#
PC -> stack

Call read service routine

r

.

Call RET

PC <- stack

Retrieve ‘fd’, ‘Bbuffer’, ‘size’
from stack

Read ‘size’ number of bytes from
‘fd” into ‘&buffer’

Call RET

Read Kernel Space
Service Routine



Unix System Calls

Process I'I'"IEII"IEI.QEI'I"I'EI"It

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file's status information




Unix System Calls

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970




Operating System Architecture

* Way to organize operating system
components.

 Two dominating architectures:
—Monolithic
— Microkernels



OS Architecture: Monolithic




OS Architecture: Monolithic

A main program that invokes the requested
service procedure.

* A set of service procedures that carry out the
system calls.

* A set of utility procedures that help the
service procedures.



OS Architecture: Microkernels
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Summary

o What is Operating
System?

v'System software

o Operating System Roles
v Extended Machine
v'Resource Manager

o Operating System
Components

o Operating System Modes
v'User Mode
v'Kernel Mode

o System Calls

o Operating System
Architecture

v’ Monolithic
v'Microkernels



Next

Process Management

— Process Abstraction

— Process Operations

— Process States

— Process Scheduling

— Context Switching

— Inter Process Communications (IPC)
— Process Synchronization



