CSCI 360
Introduction to Operating Systems

Introduction

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

What is Operating System?
Operating System Roles
Operating System Components
Operating System Modes
System Calls

Operating System Architecture

What is an Operating System?

Unix, FreeBSD (UC Berkeley Unix)
Minix, Mach, L4

Linux

Mac OS X

Windows

Android

I0S

What is an Operating System?

user user user user
1 2 3 n
4 3 J 3
h 4 ¥ Y h 4
compiler assembler text editor database
system

system and application programs

operating system

computer hardware

mouse keyboard printer monitor
disks P
on-iine "\
SS i _
CRU s USBcontioler | | 92PNICS
controller adapter

memory

What is an Operating System?

* A system software that acts as an intermediary
between the application software and computer

hardware
* Operating System:
— Executes application software.

— Provides system level services to the application
software.

— Provides convenience to the application software
developers.

— Controls and enables efficient usage of system
hardware.

User
Mode

Kernel
Mode

&

What is an Operating System?

6 &8 8 & &

User
Interface

Database Web
anageme Browser

Process
Scheduler

Trap and
Interrupt

Inter Process
Communication

USB Driver DnsPIay Netfmork
Driver Driver

Dispatcher

Memory
Managment

i i i
| I I
\ A I
| | |

E — e — =

CPU

G'a"h"’ L Network Card

Disk Controller Adapter

UsSB Controller

G =

Memory

s

Users

Application
Programs

System
Programs

Operating
System
(System Programs)

System
Hardware

Operating System Roles

 Two important roles:

—Provides a nice abstraction around the
hardware or extend the machine.

—Manage the hardware resources.

OS Roles: Extended Machine

 Computer architecture at low level is
primitive and awkward to program.

* Application programmers do not want to get
too intimately involved at low level.

* Application programmers want simple and
high-level abstraction of the architecture to
deal with.

OS Roles: Extended Machine

* Operating system hides the complex
hardware and presents nice, clean, elegant,
consistent abstractions to work with.

Application programs

-<— Beaultiful interface
Operating system

e T
s
R o
7 g2

3

A, = - M @_gm?}:‘?x,
v ﬁ@ e

Hardware

-<— Ugly interface

OS Roles: Resource Manager

* Provides orderly, controlled allocation of
resources

— Keeps track which programs are using which
resources.

— Grants resource requests and accounts resource
usage.

— Mediate conflicting resource requests.

 Shares resources
— Time and space multiplexing

Operating System Components

Process Dispatcher Inter Process Trap and
Scheduler P Communication Interrupt
Memory Network
Managment System
USB Driver Dlsplay Network
Drlver Drlver

e Consists of many components and each component
performs specific tasks.

* Will learn details about followings components:
— Process Management System
— Memory Management System
— File System
— 1/0 System

Operating System Modes

User mode

Kernel mode

<

{

E-mail Music
Web reader player

XX

User interface program

Operating system

)\

> Software

> Hardware

Operating System Modes

 Dual-mode (user mode and kernel mode)
operation allows OS to protect itself and
other system components

— OS runs in kernel mode, has complete access
to all the hardware and can execute all
instructions, including privileged ones.

— Other Programs run in User mode, cannot
access the hardware directly and cannot run
privileged instructions.

— Programs in User mode, can indirectly access
hardware and execute privileged instructions
through system calls.

Operating System Modes

* System call changes mode to kernel, return
from call resets it to user

* Mode bit provided by hardware, gives the
ability to distinguish when system is
running user code or kernel code

user process

user mode
user process executing — calls system call return from system call (mode bit=1)
\ /
LY V4
\ V4
K I trap return
il mode bit = 0 mode bit = 1
kernel mode

execute system call (mode bit = 0)

User Space

Hardware

Kernel Space

Application Program

System Calls

PC -> stack

size -> stack

size_t count = read(fd, &buffer, size);

fd -> stack

&buffer -> stack

System Call User Space Routine

v

Call TRAP (syscall)

A

PC <- stack

PC <- stack

mode(PSW) <- user

Call RET 4

syscall# -> register

h 4

mode(PSW) <- kernel
PC -> stack
Call TRAP handler(syscall)

TRAP Handler
Kernel Space
Routine

Syscall Kernel
Space Routine

Call syscall kernel routine

4

h

Call IRET
PC -> stack PC <- stack
v
Retrieve syscall# from register
Find read service routine from
syscall#
PC -> stack

Call read service routine

r

.

Call RET

PC <- stack

Retrieve ‘fd’, ‘Bbuffer’, ‘size’
from stack

Read ‘size’ number of bytes from
‘fd” into ‘&buffer’

Call RET

Read Kernel Space
Service Routine

Unix System Calls

Process I'I'"IEII"IEI.QEI'I"I'EI"It

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file's status information

Unix System Calls

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Operating System Architecture

* Way to organize operating system
components.

 Two dominating architectures:
—Monolithic
— Microkernels

OS Architecture: Monolithic

OS Architecture: Monolithic

A main program that invokes the requested
service procedure.

* A set of service procedures that carry out the
system calls.

* A set of utility procedures that help the
service procedures.

OS Architecture: Microkernels

Servers
Drivers

rocess
// User progs.
¥

ee e
P®e ®

, scheduling, IPC

5
=]
o
@

2

1=
7]

2

L=
=
1]

i

@
=
g

~
o

-

p=

processes

-

ode <

User
m

Summary

o What is Operating
System?

v'System software

o Operating System Roles
v Extended Machine
v'Resource Manager

o Operating System
Components

o Operating System Modes
v'User Mode
v'Kernel Mode

o System Calls

o Operating System
Architecture

v’ Monolithic
v'Microkernels

Next

Process Management

— Process Abstraction

— Process Operations

— Process States

— Process Scheduling

— Context Switching

— Inter Process Communications (IPC)
— Process Synchronization

