GNU Assembly Programming

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

GNU Assembly Programming: Outline

* Need for Assembly Programming
* Elements of Assembly
* GNU Assembly Program Directives

Need for Assembly Programming

Writing computer booting codes.

Writing code for the machines where no compiler exists.
Writing interrupt handler codes.

Writing low-level locking codes for multi-threaded programs.
Writing the compiler code generator.

Writing code for the computer that has very limited memory and the
compiler generated codes are not small and efficient enough.

Writing codes to access low-level architectural features of a specialized
Processor.

Hello World Assembly Program

Jdata

) greet: .asciz "Hello World!\n"

/|
/|
/|
/|
/I
6 main: str Lr, [sp, #-16]! //
/I
/|
/|
/|
/|

text
.global main

ldr X0, =greet

bl printf

mov xd, xzr

1dr Lr, [sp], 416
ret (r

[label:] [directive or instruction]

Data segnent of the program starts here

Defines a null terminated string named "greet’ in data segment

A blank line between data and code segments

Code segment of the program starts here

Makes the function 'main’ global

Code for function ‘'main’ in code segment starts here, stores the return address onto stack
Loads the address of 'greet’ string into x0 register

(alls 'printf" function passing the string address as function parameter through register x@
Initializes x register to zero in order to return zero from ‘main’ function

Loads return address from the stack into 'Ir’

Returns from function ‘main’

// comment

Elements of Assembly

e Sections
— Data
— Text

e Symbols
— Labels
— Operands

* Assembler directives
* Instructions and pseudo-instructions
* Comments

Elements of Assembly

data‘!!II!!EEﬂ:IIII" [[Data segnent of the progran starts here
26‘3!!IIIII"asc1z "Hello World!\n" //Defings a null terminated string named "greet’ in data segnent
} <directive > [/ blank Line betueen data and code Segnents
I oyt S section = [[Code segnent of the progran starts here
: ‘!!iﬂlllll..g1lléT’ﬁﬁTﬁlll:ﬂI!!ﬂﬂI!l..7Ma es the function ‘main’ global

gmain; ste L, [sp, #-16]
ldr x0, =gre
bl printf

Loads the address of 'grest’ string into X0 register
(alls "printf" function passing the string address as function paraneter through register x@

/
/
/
/
/
[Code for function ‘main’ in code segment starts here, stores the return address onto stack
/
/
/Tnitializes ¥ register to zero in order to return zero fron ‘main’ function

/

/
o| |
/
/
| [Loads return address from the stack into 'Ir

mov X, xzr
€%r{1dr L, [sp], #16
1 et [<::::§35?ﬁ??ﬂ5?ﬁ£§?f:ézRet”rns fron function ‘main’

GNU Assembler Directives

* All assembler directives begin with a period (.)
* The rest of the name is composed of letters, usually in lower case

* Instructs the GNU Assembler during its assembly process on
— Controlling the Sections
— Allocating space for Variables and Constants
— Setting and manipulating symbols
— Filling and Aligning memory space
— Conditional assembly
— Defining Macros

GNU Assembler Directives: Sections

subsection
Tells the assembler to assemble the following statements onto the end of the
data (global and static variables) subsection.
subsection
Tells the assembler to assemble the following statements onto the end of the
text (code) subsection.
subsection
Tells the assembler to assemble the following statements onto the end of the bss
(uninitialized global and static variables) subsection.
name
Tells the assembler to create custom section. Rarely needed.

GNU Assembler Directives: Allocating Strings

"string”
Expects zero or more string literals separated by commas. It assembles
each string (with no automatic trailing zero byte) into consecutive

addresses.
"string”
"string"
Like , but each string is followed by a zero byte. The “z” in
stands for zero. is an alias for
.data

greet: .asciz “Hello World!”
//Sets “Hello World!” to symbol greet.

GNU Assembler Directives: Allocating Integers

expressions

expressions
Takes zero or more expressions, separated by commas and emits 32-bit numbers for
each expression value and the address is advanced accordingly. If no expression is given,

the address is not advanced. and are the synonymous.
.data
number: .word 10 // Allocates 4 bytes to number variable and initializes it to 10
numbers: .word 10, 20, 30, 40, 50 // Allocates 4x5 bytes to numbers array and initializes it to

// {10, 20, 30, 40,50}

GNU Assembler Directives: Allocating Integers

expressions
expressions
Like but emits a 16-bit numbers for each expression. and are
synonymous.
expressions
Like but emits 8-bit numbers for each expression.
.data
number: .hword 10 // Allocates 2 bytes to number variable and initializes it to 10
numbers: .byte 10, 20, 30, 40,50 // Allocates 1x5 bytes to numbers array and initializes it to

// {10, 20, 30, 40,50}

GNU Assembler Directives: Allocating Floating Point

flonums
flonums
Assembles zero or more 4-byte single precision floating point numbers on ARM.
and are synonymes.
flonums

Assembles zero or more 8-byte double precision floating point numbers on ARM.

.data
fnumber: float 10.25 // Allocates 4 bytes to fnumber variable and initializes it to 10.25
dnumber: .double 102030.4050 // Allocates 8 bytes to dnumber variable and initializes it to

// 102030.4050

GNU Assembler Directives: Setting and Manipulating
Symbols

symbol, expression
symbol, expression
This directive sets the value of symbol to expression.

symbol, expression

The directive is like and , except that the assembler will signal an error
if symbol is already defined.

.equ max 1024
sets 1024 to symbol max.
.equiv max 2048
does not set 2048 to symbol max since it has already been set before.

GNU Assembler Directives: Setting and Manipulating
Symbols

symbol
symbol

This directive makes the symbol visible to the linker. If you define symbol in
your partial program, its value is made available to other partial programs
that are linked with it.

text
.global main //makes main symbol visible to the linker.
main: strlr, [sp, #-16]!

ret Ir

GNU Assembler Directives: Filling Memory Space

size, fill
size, fill
This directive emits size bytes, each of value fill. Both size and fill are absolute

expressions. If the comma and fill are omitted, fill is assumed to be zero.
and are equivalent.

.skip 4, 0 advances the location counter by 4 and pads the advanced
bytes with 0.

GNU Assembler Directives: Aligning Memory Space

advance, fill, max

— Pad the location counter (in the current subsection) to a particular storage
boundary.

— advance specifies the number of low-order zero bits of the location counter must
have set after advancement.

— fill gives the fill value to be stored in the padding bytes.

— max is the maximum number of bytes that should be skipped by this alignment
directive. If doing the alignment would require skipping more bytes than the
specified maximum, then the alignment is not done at all.

Both .align and .skip directives can be used alternatively.

GNU Assembler Directives: Aligning Memory Space

.align 3, 0 advances the location counter until it’s a multiple of 8 and if the
location counter is already a multiple of 8, no change is needed. If
advance is successful, pads the advanced bytes with 0.

.align 2, 0 advances the location counter until it’s a multiple of 4 and if the
location counter is already a multiple of 4, no change is needed. If
advance is successful, pads the advanced bytes with 0.

.align 1, 0 advances the location counter until it’s a multiple of 2 and if the
location counter is already a multiple of 2, no change is needed. If
advance is successful, pads the advanced bytes with 0.

GNU Assembler Directives: Aligning Memory Space

.align 3, 0, 4 advances the location counter until it’s a multiple of 8 and if
the location counter is already a multiple of 8, no change is needed. If it
requires more than 4 bytes to advance, it does not advance at all. If
advance is successful, pads the advanced bytes with 0.

GNU Assembler Directives: Conditional Assembly

argument

marks the beginning of a section of code which is only considered part
of the source program being assembled if the argument (which must be an
absolute expression) is non-zero. The end of the conditional section of code must
be marked by the directive. Optionally, you may include code for the
alternative condition, flagged by the directive.

GNU Assembler Directives: Conditional Assembly

.set ARMS8 1 .set ARMS8 0
if ARMS8 if ARMS8
\dr x0, [x0, #8] ldr x0, [x0, #8]
.else .else
\dr rO, [rO, #4] \dr rO, [rO, #4]
.endif .endif
Assembles to Assembles to

ldr x0, [x0, #8] \dr rO, [rO, #4]

GNU Assembler Directives: Include

||f' 1

ile

This directive provides a way to include supporting files at specified points in
your source program. The code from file is assembled as if it followed the point
of the . Quotation marks are required around file.

When the end of the included file is reached, assembly of the original file
continues.

You can control the search paths used with the -I’” command line parameter.
This is a good way to include files containing macros and other definitions. It is
similar to including header files in C and C++.

GNU Assembler Directives: Macro

macname macargs ...
Begin the definition of a macro called macname. If your macro definition requires

arguments, specify their names after the macro name, separated by
commas or spaces. You can supply a default value for any macro argument by

following the name with ‘=default’.
Mark the end of a macro definition.

Exit early from the current macro definition.

GNU Assembler Directives: Macro

.macro SHIFT a,b
mov \a, #\b
Macro Definition .if \b<o
asr \a, \a, #-\b
.else
1s1l \a, \a, #\b
.endif
.endm
Macro Expansions
SHIFT x1, 3 SHIFT x4, -6
MOV X1, #3 MOV x4, #oxffFffffffffffffa
LSL x1,x1,#3 ASR x4 , x4 , #6

	Slide 1: GNU Assembly Programming
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

