
ARM Processor Architecture

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

ARM Processor Architecture: Outline

• ARM7 Processor Organization

• ARM7 Registers

• ARM7 Modes, Status, and Control Flags

• ARM8 Registers

• ARM8 Instruction Set Architecture
‒ Data Transfer: Load and Store

‒ Data Processing: Arithmetic, Logical, and Shift

‒ Branch: Conditional and Unconditional

ARM Processor Architecture
• ARM, primarily a RISC system with the following attributes:

‒ Moderate array of uniform registers

‒ A load/store model of data processing in which operations only perform on
operands in registers and not directly in memory

‒ A uniform fixed-length instruction of 32 bits for the standard set and 16 bits
for the Thumb instruction set

‒ Separate arithmetic logic unit (ALU), Multiply, and Shifter units

‒ A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

‒ Auto-increment and auto-decrement addressing modes are used to improve
the operation of program loops

Simplified ARM7
Processor

Organization

ARM Cortex-A8
Processor

Organization

ARM Processor Modes

ARM supports 1 non-privileged (user mode) and 6 privileged
modes.

User mode: Most application programs execute in this mode, the
program in user mode is unable to access protected system resources
or to change mode, other than by causing an exception to occur.

Privileged Modes: These modes are used to run system software,
the program in any privileged mode is able to access protected system
resources and to change mode. Privileged modes consist of 1 system
mode and 5 exception modes. A program enters into an exception
mode when corresponding exception occurs.

ARM Processor Modes

System Mode: This mode is not entered by any exception and uses
the same register set available in User mode. The System mode is
used for running certain privileged operating system tasks. System
mode tasks may be interrupted by any of the five exception
categories.

ARM Processor Modes

Exception Modes: The exception modes have full access to system
resources and can change modes freely. These are entered when
specific exceptions occur. Each of these modes has some dedicated
registers that substitute for some of the user mode registers, and
which are used to avoid corrupting User mode state information
when the exception occurs.

ARM Exception Modes

Supervisor mode: It is entered when the processor encounters a software
interrupt instruction. Software interrupts are a standard way to invoke operating
system services on ARM.

Abort mode: Entered in response to memory faults.

Undefined mode: Entered when the processor attempts to execute an
instruction that is not supported either by the main integer core or by one of the
coprocessors.

ARM Exception Modes

Fast interrupt mode: Entered whenever the processor receives an interrupt
signal from the designated fast interrupt source. A fast interrupt cannot be
interrupted, but a fast interrupt may interrupt a normal interrupt.

Interrupt mode: Entered whenever the processor receives an interrupt signal
from any interrupt source (other than fast interrupt). An interrupt may
only be interrupted by a fast interrupt.

ARM7 or
ARM8 32-bit
Architecture
Register Set

ARM CPSR and SPSR Register Format

ARM Condition Code Flag bits in CPSR

N bit: indicates that the computation result is negative.

Z bit: indicates that the computation result is zero.

C bit: indicates that carry out occurred in computation.

V bit: indicates that overflow occurred in computation.

ARM Special Flag bits in CPSR

Q bit: used to indicate whether overflow and/or saturation has

occurred in some Single Instruction Multiple Data (SIMD)

instructions.

J bit: indicates the use of special 8-bit instructions, known as

Jazelle instructions.

GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than

or Equal (GE) flags for individual bytes or halfwords of the result.

ARM System Control Flag bits in CPSR

E bit: Controls load and store endianness for data; ignored for
instruction fetches.
Interrupt disable bits: When set, A bit disables imprecise data
aborts; I bit disables IRQ interrupts; and F bit disables FIQ
interrupts.
T bit: Indicates whether instructions should be interpreted as
normal ARM instructions or Thumb instructions.
Mode bits [4:0]: Indicates the processor mode.

These system control bits can only be altered in the privileged

mode.

ARM Processor Mode Bits

ARM Processor Big and Little Endian Support

ARM Condition
Codes based on
Condition Code

Flags in CPSR

ARM Processor 64-bit Architecture Double Word
Register Set

ARM Processor 64-bit Architecture Double Word
Register Set

X0 – X7: Arguments or Results Registers
Arguments to a function are passed through x0 – x7 registers.

Results from a function are returned through x0 – x7 registers.

X8: Indirect Result Location Register
Results from a function is usually returned from a function to its caller through x0 to x7

registers if the function is returning directly to the caller.

There are some situations where a function does not call another function directly and the

called function also does not return to the caller directly. For example, a user mode

function calls a kernel function indirectly using a syscall and the kernel function does not

return to the user mode function. User mode function passes a syscall number using x8
register to a trap handler. Trap handler calls an appropriate kernel function based on the

syscall number. The kernel function returns the result to the user function using x8 register.

ARM Processor 64-bit Architecture Double Word
Register Set

X9 - X15: Temporary Registers
Functions are free to use these registers as temporary or scratch registers. Functions do

not need to save and retrieve the current value of these registers before use and before

return respectively.

X16 and X17: Intra-Procedure Call Scratch Registers
Linker often inserts codes before and after function codes in order to facilitate a function

call, which are called prologue and epilogue respectively.

Registers x16 and x17 can be used by the linker as the scratch registers in both prologue

and epilogue codes.

Regular function codes should avoid using both x16 and x17.

If a regular function uses x16 and x17 as the temporary registers, it should be aware of

the fact that the value it writes on these registers might not be seen by its called

functions since the linker might have used them as the scratch registers and modifies

their values in prologue or epilogue codes.

ARM Processor 64-bit Architecture Double Word
Register Set

X18: Platform Register
Register x18 is reserved for individual platform or OS specific codes in order to use it in

platform specific way. Platform independent codes must avoid using it.
If a platform chooses not to use x18 as its platform specific special register, platform

independent codes can use x18 register as a temporary register.

X19 – X27: Saved Register
A function must save the current value of these registers before using them and

restore the saved value before returning. It guarantees that the values in these

registers are preserved across multiple function calls.

ARM Processor 64-bit Architecture Word Register Set

• PC is not a general purpose register in ARM64.

• ARM64 also supports 32-bit word registers and are

represented by Wn instead of Xn in assembly code.

• Stack pointer sp (64-bit) is represented by wsp (32-bit).

• Zero register xzr (64-bit) is represented by wzr (32-bit).

ARM Processor 64-bit Architecture Word Register Set

• ARM64 assembly language overloads instruction mnemonics,

and distinguishes between the different forms of an instruction

based on the operand register names.

• For example the ADD instructions below all have different

opcodes, but the programmer only has to remember one

mnemonic and the assembler automatically chooses the

correct opcode based on the operands.

ADD W0, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, #42 // add 64-bit immediate

ARM8 A64 Data Transfer Instructions

ARM8 A64 Data Transfer Instructions: Unscaled
and Scaled

• Unscaled
• LDUR Wt/Xt, [Xn|SP{, #simm}]
• STUR Wt/Xt, [Xn|SP{, #simm}]
• simm value range: -256 ~ 255

• NO need to be a multiple of data access size 4 or 8

• Scaled
• LDR Wt/Xt, [Xn|SP{, #pimm}]
• STR Wt/Xt, [Xn|SP{, #pimm}]
• pimm value range:

• 32-bit: 0 ~ 16380, and pimm % 4 == 0 (is a multiple of 4)
• 64-bit: 0 ~ 32760, and pimm % 8 == 0 (is a multiple of 8)
• NEED to be a multiple of data access size 4 or 8

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Load

ldur x7, [x3, x2] //Load x7 with double word at the address (x3 + x2)

ldur x7, [x3, #2] //Load x7 with double word at the address (x3 + 2)

ldur x7, [x3, x2]! //Load x7 with double word at the address (x3 + x2), then

//store the address in x3, pre-indexed,

ldur x9, [x2, #2]! //Load x9 with double word at the address (x2 + 2), then

//store the address in x2, pre-indexed

ldur x7, [x3], #2 //Load x7 with double word at the address in x3 then

//increment x3 by 2, post-indexed

ARM8 A64 Data Transfer Instructions: 32-bit Unscaled Load

ldur w7, [w3, w2] //Load w7 with word at the address (w3 + w2)

ldur w7, [w3, #2] //Load w7 with word at the address (w3 + 2)

ldur w7, [w3, w2]! //Load w7 with word at the address (w3 + w2), then

//store the address in w3, pre-indexed

ldur w9, [w2, #2]! //Load w9 with word at the address (w2 + 2), then

//store the address in w2, pre-indexed

ldur w7, [w3], #2 //Load w7 with word at the address in w3 then

//increment w3 by 2, post-indexed

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr x7, [x3, x2] //Load x7 with double word at the address (x3 + x2)

ldr x7, [x3, #8] //Load x7 with double word at the address (x3 + 8)

ldr x7, [x3, x2]! //Load x7 with double word at the address (x3 + x2), then

//store the address in x3, pre-indexed

ldr x9, [x2, #8]! //Load x9 with double word at the address (x2 + 8), then

//store the address in x2, pre-indexed

ldr x7, [x3], #8 //Load x7 with double word at the address in x3 then

//increment x3 by 8, post-indexed

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled Half-
word and Byte Load

ldurh x9, [x2, #2]! //Load x9 with the half-word at the address (x2 + 2) and

//zero extend x9, then store the address in x2, pre-indexed

ldursh x5, [x2] //Load x5 with the half-word at the address in x2 and sign

//extend x5.

ldurb x9, [x2, #1]! //Load x9 with the byte at the address (x2 + 1) and zero

//extend x9, then store the address in x2, pre-indexed

ldursb x5, [x2] //Load x5 with the byte at the address in x2 and sign

//extend x5.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Half-
word and Byte Load

ldrh x9, [x2, #2]! //Load x9 with the half-word at the address (x2 + 2) and

//zero extend x9 , then store the address in x2, pre-indexed

ldrsh x5, [x2] //Load x5 with the half-word at the address in x2 and sign

//extend x5.

ldrb x9, [x2, #1]! //Load x9 with the byte at the address (x2 + 1), then store

//the address in x2, pre-indexed

ldrsb x5, [x2] //Load x5 with the byte at the address in x2 and sign

//extend x5.

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Store

stur x7, [x3, x2] //Store x7 (double word) at the address (x3 + x2)

stur x7, [x3, #2] //Store x7 (double word) at the address (x3 + 2)

stur x7, [x3, x2]! //Store x7 (double word) at the address (x3 + x2), then

//store the address in x3, pre-indexed

stur x9, [x2, #2]! //Store x9 (double word) at the address (x2 + 2), then store

//the address in x2, pre-indexed

stur x7, [x3], #2 //Store x7 (double word) at the address in x3 then

//increment x3 by 2, post indexed

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Store

str x7, [x3, x2] //Store x7 (double word) at the address (x3 + x2)

str x7, [x3, #8] //Store x7 (double word) at the address (x3 + 8)

str x7, [x3, x2]! //Store x7 (double word) at the address (x3 + x2), then

//store the address in x3, pre-indexed

str x9, [x2, #8]! //Store x9 (double word) at the address (x2 + 8), then store

//the address in x2, pre-indexed

str x7, [x3], #8 //Store x7 (double word) at the address in x3 then

//increment x3 by 8, post-indexed

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Half-word and Byte Store

sturh x9, [x2, #2]! //Store half-word of x9 at the address (x2 + 2), then store

//the address in x2, pre-indexed

sturb x9, [x2, #1]! //Store byte of x9 at the address (x2 + 1), then store

//the address in x2, pre-indexed

strh x9, [x2, #2]! //Store half-word of x9 at the address (x2 + 2), then store

//the address in x2, pre-indexed

strb x9, [x2, #1]! //Store byte of x9 at the address (x2 + 1), then store

//the address in x2, pre-indexed

ARM8 A64 Data Transfer Instructions: Literal Pool Load

ldr x9, =label
//loads memory address referred by label to X9

.data

fname: .asciz “Humayun”

.text

ldr x1, =fname

ARM8 A64 Load/Store Instructions Addressing
Modes

ARM8 A64 Arithmetic Instructions

ARM8 A64 Arithmetic Logic Instructions

add x0, x1, x2 //x0=x1+x2

adds x0, x1, x2 //x0=x1+x2, and set cpsr flags

adc x0, x1, x2 //x0=x1+x2+carry

adcs x0, x1, x2 //x0=x1+x2+carry, and set cpsr flags

sub x0, x1, x2 //x0=x1-x2

subs x0, x1, x2 //x0=x1-x2, and set cpsr flags

sbc x0, x1, x2 //x0=x1-x2-1+carry

sbcs x0, x1, x2 //x0=x1-x2-1+carry, and set cpsr flags

cmp x0, #imm //compare x0 with #imm

cmp x0, x1 //compare x0 with x1

ARM8 A64 Arithmetic Logic Instructions

mul w0, w1, w2 //w0=w1*w2

mul x0, x1, x2 //x0=x1*x2

smull x0, w1, w2 //x0=w1*w2, treats source operands as signed

umull x0, w1, w2 //x0=w1*w2, treats source operands as unsigned

sdiv w0, w1, w2 //w0=w1÷w2, treats source operadns as signed

sdiv x0, x1, x2 //x0=x1÷x2, treats source operadns as signed

udiv w0, w1, w2 //w0=w1÷w2, treats source oprands as unsigned

udiv x0, x1, x2 //x0=x1÷x2, treats source oprands as unsigned

ARM8 A64 Logical Instructions

ARM8 A64 Logical Instructions

and x0, x1, #bimm64 //x0 = x1 & #bimm64

and w0, w1, #bimm32 //w0 = w1 & #bimm32

and w0, w1, w2 //w0 = w1 & w2

ands x0, x1, x2 //x0 = x1 & x2, and set flags (clears C and V)

orr x0, x1, #bimm64 //x0 = x1 | #bimm64

orr x0, x1, x2 //x0 = x1 | x2

eor x0, x1, #bimm64 //x0 = x1 ⊕ #bimm64

eor x0, x1, x2 //x0 = x1 ⊕ x2

ARM8 A64 Logical Instructions

asr x0, x1, #uimm //x0 = arithmetic shift right x1 #uimm bits

lsl x0, x1, #uimm //x0 = logical shift left x1 #uimm bits

lsr x0, x1, #uimm //x0 = logical shift right x1 #uimm bits

ror x0, x1, #uimm //x0 = rotate right x1 #uimm bits

asr x0, x1, x2 //x0 = arithmetic shift right x1 (x2 & 0x3f) bits

lsl x0, x1, x2 //x0 = logical shift left x1 (x2 & 0x3f) bits

lsr x0, x1, x2 //x0 = logical shift right x1 (x2 & 0x3f) bits

ror x0, x1, x2 //x0 = rotate right x1 (x2 & 0x3f) bits

ARM8 A64 Branch Instructions

ARM8 A64 Conditional Branch Instructions

b.cond label //Jump to program relative label if cond is true

cbz x1, label //Jump to program relative label if x1 is equal to zero

cbnz x1, label //Jump to program relative label if x1 is not equal to zero

tbz x1, #uimm6, label //Jump to program relative label if bit number

//#uimm6 in x1 is equal to zero

tbnz x1, #uimm6, label //Jump to program relative label if bit number

//#uimm6 in x1 is not equal to zero

ARM8 A64 Unconditional Branch Instructions

b label //Jump to program relative label

bl label //Jump to program relative label and write next instruction

//address in link register (lr) or x30

blr x1 //Jump to address in x1 and write next instruction

//address in link register (lr) or x30

br x1 //Jump to address in x1

ret {x30} //Jump to address in x30 and hints the CPU that this a

//subroutine return. Jump to address in x30 if a register is

//omitted.

