ARM Processor Architecture

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

ARM Processor Architecture: Outline

RM7 Processor Organization

RM'7 Registers

RM7 Modes, Status, and Control Flags
RM8 Registers

RM8 Instruction Set Architecture

— Data Transfer: Load and Store

> > > > P

— Data Processing: Arithmetic, Logical, and Shift
— Branch: Conditional and Unconditional

ARM Processor Architecture

* ARM, primarily a RISC system with the following attributes:

Moderate array of uniform registers

A load/store model of data processing in which operations only perform on
operands in registers and not directly in memory

A uniform fixed-length instruction of 32 bits for the standard set and 16 bits
for the Thumb instruction set

Separate arithmetic logic unit (ALU), Multiply, and Shifter units

A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

Auto-increment and auto-decrement addressing modes are used to improve
the operation of program loops

Simplified ARM7
Processor
Organization

External memory (cache, main mem ory)

A
] Memory address register | Memory buffer register [
A l A
Sign
. —| I cCrementer
R15(PC) extend
A 4 ‘l
Rd
- User Register File (RO - R15)
Rn Rm Acc

Barrel
shifter

Multiply/
accumulate

—

Instruction register

!

Instruction
decoder

!

Control
unit

)

ARM Cortex-A8
Processor
Organization

13-stage integer pipeline

__.-‘A'--__

2 stages

5 stages

6 stages

~

y

Branch mispredict

Instruction execute and Load/Store

lRepIay

Instruction register writeback

Instruction fetch Instruction decode ALU pipe
L1 T o MUL pipe 0 L1
I-side cache Prea]:'.dtCh —P Decode & Dependency — é s cache D-side
L1 i [T - i L1
fAM interface branch N sequencer Ch?;tznd R £ % ALU pipe 1 interface A
A E]
prediction s ¢ Toad/store
TLB pipeQor1 TLB |
4
I ' J‘, J‘, :
L2 NEON unit MECN register writeback
cache Instruction, data, NEON and preload |
engine buffers ¥ | Integer ALU pipe |
w »
L2 cache = | Integer MUL pipe |
itrati >
ALl pipeline control NEON g H> ——
instruction o | Ingeger shift pipe |
decode [* = » .
Fill and eviction 8 |__non-EEEFPADD pipe |
gueue L2 cache | | L2 cache Z | non-IEEE FP MUL pipe |
data RAM tag RAM
Bus Write ata a9 | IEEE floating-point engine |
interface buffer Load and store

unit (BIU) data queue — | Load/store permute pipe |

\./-Y\Jl/T\J

3 stages
—

_’——Y\/

1 stage 6 stages

_/

—v—

10-stage SIMD pipeline

ARM Processor Modes

ARM supports 1 non-privileged (user mode) and 6 privileged
modes.

User mode: Most application programs execute in this mode, the
program in user mode is unable to access protected system resources
or to change mode, other than by causing an exception to occur.

Privileged Modes: These modes are used to run system software,
the program in any privileged mode is able to access protected system
resources and to change mode. Privileged modes consist of 1 system
mode and 5 exception modes. A program enters into an exception
mode when corresponding exception occurs.

ARM Processor Modes

System Mode: This mode is not entered by any exception and uses
the same register set available in User mode. The System mode is
used for running certain privileged operating system tasks. System
mode tasks may be interrupted by any of the five exception
categories.

ARM Processor Modes

Exception Modes: The exception modes have full access to system
resources and can change modes freely. These are entered when
specific exceptions occur. Each of these modes has some dedicated
registers that substitute for some of the user mode registers, and
which are used to avoid corrupting User mode state information

when the exception occurs.

ARM Exception Modes

Supervisor mode: It is entered when the processor encounters a software
/nterrupt instruction. Software interrupts are a standard way to invoke operating
system services on ARM.

Abort mode: Entered in response to memory faults.
Undefined mode: Entered when the processor attempts to execute an

instruction that is ot supported either by the main integer core or by one of the
COprocessors.

ARM Exception Modes

Fast interrupt mode: Entered whenever the processor receives an interrupt
signal from the designated fast interrupt source. A fast interrupt cannot be
interrupted, but a fast interrupt may interrupt a normal interrupt.

Interrupt mode: Entered whenever the processor receives an interrupt signal
from any /nterrupt source (other than fast interrupt). An interrupt may
only be interrupted by a fast interrupt.

ARM7/ or
ARMBS 32-bit
Architecture
Register Set

Modes

Privileged modes

Exception modes

User System Supervisor Abort Undefined | Interrupt Fast
Interrupt
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
RS RS RS RS RS RS RS
R6 R6 R6 R6 Ro6 R6 R6
R7 R7 R7 R7 R7 R7 R7
RS RS RS RS RS RS RE& fiq
R9 R9 RO R9 RO R9 R9 fiq
R10 R10 R10 R10 R10 R10 R10 fiq
R11 Rl11 R11 R11 R11 R11 R11 fiq
R12 R12 R12 R12 R12 R12 R12 fiq
R13 (SP) R13 (SP) R13 svec R13 abt R13 und R13 irq R13 fiq
R14 (LR) R14 (LR) R14 svc R14 abt R14 und R14 irq R14 fiq
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR _sve |SPSR_abt |SPSR und |SPSR irq SPSR fiq

Shading indicates that the normal register used by User or System mode has been replaced by an
alternative register specific to the exception mode.

SP = stack pointer
LR =link register
PC =program counter

CPSR = current program status register
SPSR = saved program status register

ARM CPSR and SPSR Register Format

31 3029 28 27 26 2524 232221201918 1716151413 121110 9 8 7 6 5 4 3 2 1 0
N|IZ|C|V|Q]|Res | J | Reserved | GE[3:0] Reserved EIA|T|F|T M[4:0]

V_YWY\J

User flags System control flags

ARM Condition Code Flag bits in CPSR

N bit: indicates that the computation result is negative.
Z bit: indicates that the computation result is zero.

C bit: indicates that carry out occurred in computation.
V bit: indicates that overflow occurred in computation.

ARM Special Flag bits in CPSR

Q bit: used to indicate whether overflow and/or saturation has
occurred in some Single Instruction Multiple Data (SIMD)
Instructions.

J bit: indicates the use of special 8-bit instructions, known as
Jazelle instructions.

GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than
or Equal (GE) flags for individual bytes or halfwords of the result.

ARM System Control Flag bits in CPSR

E bit: Controls load and store endianness for data; ignored for
instruction fetches.

Interrupt disable bits: When set, A bit disables imprecise data
aborts; I bit disables IRQ interrupts; and F bit disables FIQ
interrupts.

T bit: Indicates whether instructions should be interpreted as
normal ARM instructions or Thumb instructions.

Mode bits [4:0]: Indicates the processor mode.

These system control bits can only be altered in the privileged
mode.

ARM Processor Mode Bits

M[4:0] Mode Accessible registers

O 10000 User PC, B14 10 RO, CPSKE

Ob 10001 FIQ PC, R14 figto R8 fig. R7 to R0, CPSR, SPSR._fig
Ob10010 IR0 PC, R14 irg. R13 irg, R12 to RO, CPSR, SPSR_irq
Ob10011 Supervisor PC, K14 swve, R13 sve, R12 to RO, CPSE, 5PSR_sve
Ob10111 Abort PC, R14 abt, R13 abt, R12 1o RO, CPSR, SPSR_abi
Ob11011 Undefined PC. K14 und. R13 und, R12 1o RO, CPSE, SP5R und
Ob11111 System PC. R14 1o RO, CPSE (ARM architecture v4 and above)

ARM Processor Big and Little Endian Support

Data bytes
in memory

(ascending address values
from byte 0 to byte 3)

»| Byte3 |«

» Byte 2 |«

» Bytel |«

—p Byte 0 |

31 v ¥ 4 v O 31 v Y Y y 0
Byte3 | Byte2 | Bytel | Byte 0 Byte0 | Bytel | Byte2 | Byte3
ARM register ARM register

program status register E-bit =0 program status register E-bit =1

ARM Condition

Codes based on

Condition Code
Flags in CPSR

Code Symbol Condition Tested Comment
0000 EQ Z=1 Equal
0001 NE Z=0 Not equal
0010 CS/HS c=1 Carry set/unsigned higher or same
0011 CC/LO C=0 Carry clear/unsigned lower
0100 MI N =1 Minus/negative
0101 PL N=0 Plus/positive or zero
0110 VS V=1 Overtlow
0111 VC V=0 No overflow
1000 HI C=1ANDZ =0 Unsigned higher
1001 LS C=00RZ=1 Unsigned lower or same
1010 GE N=V Signed greater than or equal
[N=1TANDYV =1)
OR(N=0ANDYV = 0)]
1011 LT N # V Signed less than
[N=1ANDYV =0)
OR(N=0ANDYV = 1)]
1100 GT (Z=0)AND (N =V) Signed greater than
1101 LE (Z=1)OR (N # V) Signed less than or equal
1110 AL — Always (unconditional)
1111 — — This instruction can only be execut

unconditionally

ARM Processor 64-bit Architecture Double Word
Register Set

Name Usage

XO-X7 o7 Arguments/Results no
X8 8 Indirect result location register no
X9-¥15 915 Temporaries no

16 May I::e_: used by linker as a scratch_ register; Ho
X116 (IPOD other times used as temporary register

17 May I::e_: used by linker as a sc:ratch_ register; no
X17 C(IP1) other times used as temporary register

18 Platform regi'_s.ter for platform ind_ependent no
¥R code; otherwise a temporary register
X19-X27 1927 Saved yes
xXZ28 (S5P) 28 Stack Pointer yes
X229 (FP) 29 Frame Pointer yes
X30 (LR) 30 Link Register (return address) yes
XIR 31 The constant value O n.a.

ARM Processor 64-bit Architecture Double Word
Register Set

X0 - X7: Arguments or Results Registers
Arguments to a function are passed through x0 — x7 registers.
Results from a function are retfurned through x0 — X7 registers.

X8: Indirect Result Location Register

Results from a function is usually retfurned from a function to its caller through x0 to x7
registers if the function is returning directly to the caller.

There are some situations where a function does not call another function directly and the
called function also does not return to the caller directly. For example, a user mode
function calls a kernel function indirectly using a syscall and the kernel function does not
return to the user mode function. User mode function passes a syscall number using x8
register to a trap handler. Trap handler calls an appropriate kernel function based on the
syscall number. The kernel function returns the result to the user function using x8 reqister.

ARM Processor 64-bit Architecture Double Word
Register Set

X9 - X15: Temporary Registers

Functions are free to use these registers as temporary or scratch registers. Functions do
not need to save and retfrieve the current value of these registers before use and before
return respectively.

X16 and X17: Intfra-Procedure Call Scratch Registers

Linker oftfen inserts codes before and after function codes in order to facilitate a function
call, which are called prologue and epilogue respectively.

Registers x16 and x17 can be used by the linker as the scratch registers in both prologue
and epilogue codes.

Regular function codes should avoid using both x16 and x17.

If a regular function uses x16 and x17 as the temporary registers, it should be aware of
the fact that the value it writes on these registers might not be seen by its called
functions since the linker might have used them as the scratch registers and modifies
their values in prologue or epilogue codes.

ARM Processor 64-bit Architecture Double Word
Register Set

X18: Platform Register

Register x18 is reserved for individual platform or OS specific codes in order to use it in
platform specific way. Platform independent codes must avoid using if.

If a platform chooses not to use x18 as its platform specific special register, platform
independent codes can use x18 register as a temporary register.

X19 - X27: Saved Register

A function must save the current value of these registers before using them and
restore the saved value before returning. It guarantees that the values in these
registers are preserved across multiple function calls.

ARM Processor 64-bit Architecture Word Register Set

« PCis not ageneral purpose register in ARM64.

« ARMG64 also supports 32-bit word registers and are
represented by Wn instead of Xn in assembly code.

« Stack pointer sp (64-bit) is represented by wsp (32-bit).
« Zero register xzr (64-bit) is represented by wzr (32-bit).

ARM Processor 64-bit Architecture Word Register Set

« ARMG64 assembly language overloads instruction mnemonics,
and distinguishes between the different forms of an instruction
based on the operand register names.

« For example the ADD instructions below all have different
opcodes, but the programmer only has to remember one
mnemonic and the assembler automatically chooses the

correct opcode based on the operands

ADD WO, W1, W2
ADD X0, X1, X2
ADD X0, X1, #42

/] ad
/] ad

/] ad

C
C
C

32-
64-
64-

DIt register
DIt register

hit immediate

ARMS8 A64 Data Transfer Instructions

Load and Store Instructions

LOP rt, rt2, [addr] rt2:rt = [addr],,

LDPSW Xt, Xt2, [addr] | Xt = [addr]3;; Xt2 = [addr+4]5
LO{UIR rt, [addr] rt = [addr],,

LD{U}R{B,H} Wt, [addr] Wt = [addr]}

LD{U}RS{B.H} rt, [addr] rt = [addr]

LD{U}RSW Xt, [addr] Xt = [addr]E

FRFM priop, addr Prefetch{addr, prfop)

5TP rt, rt2, [addr] [addr]5p = rt2:rt

ST{U}R rt, [addr] [addr],, = rt

ST{U}R{B,H} Wt, [addr] [addr],, = Wt

Addressing Modes (addr)

<P, LDPSW Xn{, #i7,.}] addr = Xn + iz, .0,
xxP,LDPSW [Xn], #iz,. addr=Xn; Xn+=il 0,
P, LDPSW [Xn, #ip,]! Kn+:i§|:+5_5:[]5; addr=2Xn
xx<R*,PRFM [Xn{, #i5, .} addr = Xn + if, 0,
xorR* [*n], #ig addr = Xn; Xn += i*
o™ [Xn, #ig]! ¥n += iT; addr = Xn
xxR*, PRFM [#n.Xm{, LSL #0|s}] addr = Xn + Xm <= s
wR* PRFM [*n,Wm {S U} XTW{ #0|s}] addr = Xn + Wm' < s
x=xR* PRFM [#n 2Xm, SXTX{ #0|s}] addr = Xn + XmT < s
xcUR* PRFM [Xn{, #ig}] addr = Xn += i™

LDR{SW} PRFM -rel,, addr = PC + reli; ,:0,

ARMS8 A64 Data Transfer Instructions: Unscaled
and Scaled

e Unscaled

* LDUR Wt/Xt, [Xn|SP{, #simm}]
* STUR Wt/Xt, [Xn|SP{, #simm}]

* simm value range: -256 ~ 255
* NO need to be a multiple of data access size 4 or 8

e Scaled
* LDR Wt/Xt, [Xn|SP{, #pimm}]
* STR Wt/Xt, [Xn|SP{, #pimm}]

e pimm value range:
e 32-bit: 0~ 16380, and pimm % 4 == 0 (is a multiple of 4)
* 64-bit: 0~ 32760, and pimm % 8 == 0 (is a multiple of 8)
« NEED to be a multiple of data access size 4 or 8

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled
Load

Idur x7, [x3, x2] //Load x7 with double word at the address (x3 + x2)
ldur x7, [x3, #2] //Load x7 with double word at the address (x3 + 2)

Idur x7, [x3, x2]! //Load x7 with double word at the address (x3 + x2), then
//store the address in x3, pre-indexed

Idur x9, [x2, #2]! //Load x9 with double word at the address (x2 + 2), then
//store the address in x2, pre-indexed

ldur x7, [x3], #2 //Load x7 with double word at the address in x3 then
/lincrement x3 by 2, post-indexed

ARMS8 A64 Data Transfer Instructions: 32-bit Unscaled Load

ldur w7, [w3, w2]
Idur w7, [w3, #2]

Idur w7, [w3, w2]!

ldur w9, [w2, #2]!

Idur w7, [w3], #2

//Load w7 with word at the address (w3 + w2)
//Load w7 with word at the address (w3 + 2)

//Load w7 with word at the address (w3 + w2), then
//store the address in w3, pre-indexed

//Load w9 with word at the address (w2 + 2), then
//store the address in w2, pre-indexed

/ILoad w7 with word at the address in w3 then
/lincrement w3 by 2, post-indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr X7, [X3, X2]
Idr x7, [X3, #8]

ldr x7, [x3, x2]!

Idr x9, [x2, #8]!

Idr x7, [x3], #8

//Load x7 with double word at the address (x3 + x2)
//Load x7 with double word at the address (x3 + 8)

//Load x7 with double word at the address (x3 + x2), then
//store the address in x3, pre-indexed

//Load x9 with double word at the address (x2 + 8), then
//store the address in x2, pre-indexed

/ILoad x7 with double word at the address in x3 then
//lincrement x3 by 8, post-indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled Half-
word and Byte Load

ldurh x9, [x2, #2]! //Load x9 with the half-word at the address (x2 + 2) and
l/zero extend x9, then store the address in X2, pre-indexed

ldursh x5, [x2] //Load x5 with the half-word at the address in x2 and sign
[lextend X5.

ldurb x9, [x2, #1]! //Load x9 with the byte at the address (x2 + 1) and zero
[lextend x9, then store the address in X2, pre-indexed

ldursb x5, [x2] //Load x5 with the byte at the address in x2 and sign
/[lextend x5.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Half-
word and Byte Load

ldrh x9, [x2, #2]! //Load x9 with the half-word at the address (x2 + 2) and
l/lzero extend x9 , then store the address in x2, pre-indexed

ldrsh x5, [x2] //Load x5 with the half-word at the address in x2 and sign
/[/lextend x5.

Idrb x9, [x2, #1]! //Load x9 with the byte at the address (x2 + 1), then store
//the address in x2, pre-indexed

ldrsb x5, [x2] //Load x5 with the byte at the address in x2 and sign
/[/lextend x5.

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled
Store

stur x7, [x3, x2] //Store x7 (double word) at the address (x3 + x2)
stur x7, [x3, #2] //Store x7 (double word) at the address (x3 + 2)

stur x7, [x3, x2]! //Store x7 (double word) at the address (x3 + x2), then
//store the address in x3, pre-indexed

stur x9, [x2, #2]! //Store x9 (double word) at the address (x2 + 2), then store
//the address in x2, pre-indexed

stur x7, [x3], #2 //Store x7 (double word) at the address in x3 then
//lincrement x3 by 2, post indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Store

str x7, [x3, x2] //Store x7 (double word) at the address (x3 + x2)
str X7, [x3, #8] //Store x7 (double word) at the address (x3 + 8)
str x7, [x3, x2]! //Store x7 (double word) at the address (x3 + x2), then

//store the address in x3, pre-indexed

str x9, [x2, #8]! //Store x9 (double word) at the address (x2 + 8), then store
//the address in x2, pre-indexed
str x7, [x3], #8 //Store x7 (double word) at the address in x3 then

//lincrement x3 by 8, post-indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled
Half-word and Byte Store

sturh x9, [x2, #2]! //Store half-word of x9 at the address (x2 + 2), then store
/[the address in x2, pre-indexed

sturb x9, [x2, #1]! //Store byte of x9 at the address (x2 + 1), then store
//the address in x2, pre-indexed

strh x9, [x2, #2]! //Store half-word of x9 at the address (x2 + 2), then store
//the address in x2, pre-indexed

strb x9, [x2, #1]! //Store byte of x9 at the address (x2 + 1), then store
//the address in x2, pre-indexed

ARMS8 A64 Data Transfer Instructions: Literal Pool Load

|dr x9, =label
/[loads memory address referred by label to X9

.data
fname: .asciz “Humayun”

text
ldr x1, =fname

ARMS8 A64 Load/Store Instructions Addressing
Modes

Type Immediate Offset Register Offset Extended Register Offset
Simple register (exclusive) [base{, #0}] n/a n/a
Offset [base{, #imm}] [base,Xm{,LSL #imm}] [base,Wm, (S|U)XTW {#imm}]
Pre-indexed [base, #imm] ! n/a n/a
Post-indexed [base] , #imm n/a n/a
PC-relative (literal) load label n/a n/a

ARMS8 A64 Arithmetic Instructions

Arithmetic Instructions DPErﬂnd 2_ [npz}
ADC{S} rd, rm, rm rd =m + rm 4+ C

. all mm rm
ADD{S} rd, rn, op2 rd = rn + op2 5
ADR Xd, +rely, Xd = PC + rel® all rm, LSL #i rm <& |
ADRP Xd, *rels; Xd = PCgy,15:0y, + rel3s,»:0p, all rm, LSR #i; rm & i
CAAN rd, op2 rd + op2 5 all rm, ASR #iﬁ N
CAMP rd, op2 rd — op2 5 . 0 i .
MADD rd, rn. rm, ra rd — ra 4+ rn X rm logical rm, ROR #i; m e |
MNEG 5l o oo rd = — rn > rm arithmetic Wm, {SU}XTB{ #i;} Wm}, < i
MSUB rd, rn, rm, ra rd =ra — m = rm arithmetic Wm, {S,U}XTH{ #iy} Wm-';m <1
sl rd, m, rm rd = rm < rm arithmetic Wm, {S,U}XTW{ #i,} Wm’ < i
NEGL S} rd, op2 rd = —op2))) .)
NGC{5} rd, rm rd — —rm — ~C arithmetic Xm, {SUIXTX{ #i3} Xm® <
SBC{5} rd, rn, rm rd=m — rm — ~C arithmetic #iyo i
SDIW rd, rn, rm rd =rm = rm) arithmetic #i24 igz_uﬂu

Xd = X W W
SMADDL . W, Wm, Xa 2 Wi o< W AND,EOR ORR, TST #mask mask
SMNEGL Ad, Wn, Wm Xd = — Wn = Wm
SMSUBL *d, Wn, Wm, Xa|Xd = Xa — Wn x Wm
SMULH Xd, Xn, Xm Xd = (Xn % Xm),or.64 Keys
SAMULL ®d. Wn, Wm wd — Wn % Wm N Operand bit size (8, 16, 32 or 64)
SUB{sS} rd, rn, op2 rd = m - op2 S s Operand log byte size (0=byte,1=hword, 2=word,3=dword)
uDIv rd, rn, rm rd =rm = rm rd, rn, rm, rt General register of either size (Wn or Xn)
UmMaD v >d, Wn, Wim, Xa|Xd = Xa + Wn 2 Wm priop F‘{LD,Ll,ST}L{l..3}{HEEP,5TRM}
UMNEGL Xd, Wn, Wm Hd = — Wn > Wm {.sh} Optional halfword left shift (LSL #{16,32,481)
Ll Xd, Wi, Wm, Xa|xd = Xa — Wn >x Wm val®, val, val’ Value is sign/zero extended (? depends on instruction)
UMULH Xd, Xn, Xm Xd = (Xn % Xm)yor.ea - L
' ¥ = 3 > < Operation is signed

LIRS T Xd, Wn, Wm Xd = Wn = WWm

ARMS8 A64 Arithmetic Logic Instructions

add x0, x1, x2 [Ix0=x1+x2

adds x0, x1, x2 [Ix0=x1+x2, and set cpsr flags

adc x0, x1, x2 [IxO=x1+x2+carry

adcs x0, x1, x2 [IxO=x1+x2+carry, and set cpsr flags
sub x0, x1, x2 [/IXx0=x1-Xx2

subs x0, x1, x2 [/x0=x1-x2, and set cpsr flags

sbc x0, x1, x2 [/x0=x1-x2-1+carry

sbcs x0, x1, x2 [/x0=x1-x2-1+carry, and set cpsr flags
cmp X0, #imm //compare x0 with #imm

cmp x0, x1 //compare x0 with x1

ARMS8 A64 Arithmetic Logic Instructions

mul w0, wl, w2 [lwO=w1*w2

mul x0, x1, x2 [/XO0=x1*x2

smull x0, wl, w2 //xO=w1l*w2, treats source operands as signed
umull X0, wl, w2 //xO=w1l*w2, treats source operands as unsigned

sdiv w0, wl, w2 [/IwO=w1-w2, treats source operadns as signed
sdiv x0, x1, x2 [/x0=x1-=Xx2, treats source operadns as signed
udiv w0, wl, w2 [/IwO=w1-w2, treats source oprands as unsigned
udiv x0, x1, x2 [/x0=x1-=Xx2, treats source oprands as unsigned

Logical and Move Instructions

AND{S}
ASR
ASR
BIC{S}
EON
EOR
LSL
LSL
LSR
LSR
MOV
MOV
MOVK
MOVN
MOVZ
VI
ORN
ORR
ROR
ROR
TST

r-dl

2 2afiaadaia

rmn,
rn,
rmn,
rn,
rmn,
rn,
rmn,
rn,

rn,

ARMS8 A64 Logical Instructions

Operand 2 (op2)

op2
rm

#i
op2
op2
op2
rm

#ig

Fm

rd = rn & op2
rd=rn % rm
rd =rn & i

rd = rn & ~op2
rd = rn & ~op2
rd = rn & op2

rd = rn <= rm

rd = rn <& i

rd =rn 3 rm
rd=rn 3 i

rd = rn

rd =i
rdps15.an = |
rd = ~{i? « sh)
rd = i’ < sh
rd = ~op2

rd = rn | ~op2
rd = rn | op2
rd =rn =i

all rm rm

all rm, LSL #i rm < |

all rm, LSR #i; rm 3

all rm, ASR #ig m 3

logical rm, ROR #ij rm g
arithmetic Wm, {S,U}XTB{ #i;} Wmj, < i
arithmetic Wm, {SU}XTH{ #i;} Wm] < i
arithmetic Wm, {S,U}XTW{ #i,} Wm’ < i
arithmetic Xm, {SUIXTX{ #iy} Xm' < i
arithmetic #i i

arithmetic #ing 1
AND,EOR,ORR, TST #mask mask

Keys

'l Operand bit size (8, 16, 32 or 64)

s Operand log byte size (0=byte, 1=hword,2=word, 3=dword)
rd, rn, rm, rt General register of either size (Wn or Xn)
prfop P{LD,LI,ST}L{1..3}{KEEP,STRM}

{.sh} Optional halfword left shift (LSL #{16,32,48})

val®, val?, val’ Value is sign/zero extended (? depends on instruction)

X+ 35 <

Operation is signed

ARMS8 A64 Logical Instructions

and x0, x1, #bimm®64 [IX0 = x1 & #bhimmo64
and w0, w1, #bimm32 /[Iw0 = w1l & #bhimm32

and w0, wl, w2 [Iw0 =wl & w2

ands x0, x1, x2 I/x0 = x1 & x2, and set flags (clears C and V)
orr X0, x1, #bimmo64 /X0 = x1 | #bimm64

orr X0, x1, x2 IIx0 = x1 | x2

eor X0, x1, #bimm64 I/X0 = x1 @ #bimmo64

eor x0, x1, x2 [IXO=x1 @ x2

ARMS8 A64 Logical Instructions

asr x0, x1, #uimm
Is| X0, x1, #uimm
Isr x0, x1, #uimm
ror X0, x1, #uimm

asr x0, x1, x2
ISl X0, x1, x2
Isr x0, x1, x2
ror x0, x1, x2

/[/x0 = arithmetic shift right x1 #uimm bits
//x0 = logical shift left x1 #uimm bits

/[/x0 = logical shift right x1 #uimm bits
//X0 = rotate right x1 #uimm bits

//X0 = arithmetic shift right x1 (x2 & 0x3f) bits
//X0 = logical shift left x1 (x2 & 0x3f) bits

/I/x0 = logical shift right x1 (x2 & 0x3f) bits
//X0 = rotate right x1 (x2 & 0x3f) bits

ARMS8 A64 Branch Instructions

Branch Instructions

B relyg PC = PC + reli.,:0;

Bee rely, if(cc) PC = PC + rely; ,:0;

BL relog X30 = PC + 4; PC += rel3;,:0,
BLR Xn X30 = PC + 4; PC = Xn

BR Xn PC = Xn

CBNZ m, rely; if(m # 0) PC += rel?, ,:0,

CBZ m, rel,, if(rm = 0) PC += rel},.,:0,

RET {Xn} PC = Xn

TBNZ m, #i, rely, if(rm. # 0) PC += relj; 5:0;
TBZ m, #i, relyg if(m, = 0) PC += relf; ,:0,

ARMS8 A64 Conditional Branch Instructions

b.cond label //Jump to program relative label if cond is true
cbz x1, label /[Jump to program relative label if x1 is equal to zero
cbnz x1, label //Jump to program relative label if x1 is not equal to zero

tbz x1, #uimmeo, label

tbnz x1, #uimmeo, label

//Jump to program relative label if bit number
[[#Fuimm6 in x1 is equal to zero

//Jump to program relative label if bit number
[[#uimm6 in X1 is not equal to zero

ARMS8 A64 Unconditional Branch Instructions

b label

bl label

blr x1

br x1

ret {x30}

/[Jump to program relative label

//Jump to program relative label and write next instruction
//address in link register (Ir) or x30

//Jump to address in x1 and write next instruction
//address in link register (Ir) or x30

//Jump to address in x1
//Jump to address in x30 and hints the CPU that this a

//subroutine return. Jump to address in x30 if a register is
/lomitted.

