
ARMv8 Assembly Programming

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

ARMv8 Assembly Programming:
Outline

• Basics

• Selection

• Iteration

• Calling Functions

• Writing Functions

• Aggregate Data Types

ARMv8 Assembly Programming: Basics
• Global or static variables are placed in the data section of a

program.

• A data section is declared using .data assembler directive.

• A data section continues until a new section starts in the code.

.data //data section starts
number1: .word 100 //number1 = 100

.skip 4, 0 //skip 4 bytes to align number2 at multiple of 8 address
number2: .word 200 //number2 = 200

.align 3, 0 //align number3 at multiple of 8 address
number3: .word 300 //number3 = 300

ARMv8 Assembly Programming: Basics

• Code or assembly instructions are placed in the text
section of a program.

• A text section is declared using .text assembler directive.

• A text section continues until a new section starts.

• There must be a main function in a program and it should
be made global for the linker.

• Assembler directive .global or .globl is used to make a
symbol global for the linked.

ARMv8 Assembly Programming: Basics
.text //text section starts
.global main //main is made global

main: ldr x0, =number1 //main function starts
ldr x0, [x0]
ldr x1, =number2
ldr x1, [x1]
ldr x3, =number3
ldr x3, [x3]
add x4, x0, x1
add x4, x4, x3
mov x0, x4
ret lr

//Codes for main function

ARMv8 Assembly Programming: Basics

• Function parameters are passed and received through x0
to x7 registers.

• Function results are returned and received through x0 to
x7 registers.

• Lower numbered register should not be skipped to use a
higher numbered register for parameters and for returns.

• Local variables of a function is programmed using
registers, preferably using x9 to x15. Registers x0 to x7 can
also be used to program local variables.

ARMv8 Assembly Programming: Basics

• A function is called using bl fname instruction. It
automatically copies the return address into link register
(lr or x30).

• A function is returned using ret lr instruction. Mentioning
lr in ret instruction is optional.

• If a function calls another function current lr value must
be saved onto stack and it should be retrieved from stack
into lr before returning from the function.

ARMv8 Assembly Programming: Basics

[label:] [directive or instruction] // comment

Selection C Code

static int a = 10;

static int b = 4;

static int x;

int main() {

if (a < b)

x = a;

else

x = b;

return 0;

}

Selection
ARMv8 Assembly

Code

ARMv8 Rules for Calling a Function
• Caller function needs to push the link register current value onto the

stack and adjust the stack pointer accordingly.

• Stack address grows downward and it must be minimum 16 scaled, i.e.,
stack pointer should be subtracted at least 16 to grow.

• First 8 parameters are passed through the registers x0 to x7, the first
through x0, the second through x1, and so on.

• Before return caller function pops the link register value from the stack
into lr register and adjust the stack pointer accordingly.

• Stack address shrink upward, i.e., should be added at least 16.

ARMv8 Calling C
Library Functions

ARMv8 Rules for Calling a Function
• If there are more than 8 parameters, they are pushed onto the stack,

the last parameter is pushed first an so on, stack pointer is also adjusted
accordingly. Called function reads these parameters from the stack
whenever necessary.

• If the parameters were pushed onto the stack to call a function, upon
return from the called function the caller function needs to pop the
parameters from the stack and adjust the stack pointer.

ARMv8 Passing 11 Parameters to printf() Function

int main() {

int sum = 0;

int i;

for(i=0; i<10; i++) {sum += i;}
printf("Summation of [0,1,2,..,9] = %d\n", sum);

return 0;

}

Iteration C
Code

int main() {

int sum = 0;

int i= 0;

while(i<10) { sum += i; i++; }
printf("Summation of [0,1,2,..,9] = %d\n", sum);

return 0;

}

Iteration ARMv8 Assembly Code

ARMv8 Function or Subroutine Writing Rules

• When writing a subroutine or function:
‒ The first eight parameters are assumed in x0-x7

‒ Additional parameters are assumed in stack and can be

accessed with ldr xn, [sp, #offset] but does not need to

remove them from the stack.

‒ Free to change the content of registers x0-x7

‒ Registers x0-x7 can also be used for local variables.

‒ Registers x9-x15 are preferred for local variables, these are

temporary registers, their contents are not preserved across

function call and return.

ARMv8 Function or Subroutine Writing Rules

• When writing a subroutine or function:
‒ If the saved registers x19-x27 needed to be used inside the

function for local variables, there current values must be pushed

onto the stack and the pushed values must be popped before

return.

‒ If available registers are not enough for local variables, local

variables are implemented onto stack.

‒ If a local variable cannot fit into a register, it must be implemented

onto stack. For example, local array and local struct.

ARMv8 Function or Subroutine Writing Rules

• When writing a subroutine or function:
‒ If the function is going to call another function, rules for calling a

function must be followed.

‒ The return value must be placed in x0 (and possibly x1-x7)

‒ The return address has already been copied into register lr when

the function has been called by the caller.

‒ Use ret lr statement at the end of the function body to return from

the function

ARMv8 Function Writing Rules

ARMv8 Function Writing Rules

ARMv8 Function Writing Rules

Stack

lr
(8 bytes)

sp

0x64 (8 bytes)
sp + 0x10

0x5a (8 bytes)
sp + 0x08

(8 bytes)
sp

Stack

sp - 0x20

32

ARMv8 Function Writing: Local Array

int larray() {

int x[20];

/* try to keep i in a register */

register int i;

for(i=0; i<20; i++) { x[i] = i; }

register int sum = 0;

for(i=19; i>=0; i--) { sum += x[i] ; }

return sum;

}

ARMv8 Function Writing: Local Array

ARMv8 Function Writing: Local Array

ARMv8 Function Writing: Global Array

ARMv8
Function
Writing:

Global Array

ARMv8
Function
Writing:

Global Array

ARMv8
Function
Writing:

Global Array

ARMv8 Function Writing: Global Array

ARMv8 Function Writing: Recursive

#include <stdio.h>

int factorial(int n) {
if(n=<1) return 1;
return n*factorial(n-1);

}

int main() {
printf(“\nFactorial of %d is %d”, 5, factorial(5));
return 0;

}

Function or Subroutine Writing: Recursive

ARMv8 Function Writing: Using Pointer

void reverse(char *left, char *right) {

char tmp;

if(left<=right) {

tmp=*left;

*left=*right;

*right=tmp;

reverse(left+1,right-1);

}

}

char *string=“NANAIMO";

int main() {

printf(str);

reverse(str,str+strlen(str)-1);

printf(str);

return 0;

}

ARMv8 Function Writing: Using Pointer

Using C Local Structure

ARMv8 Using C Local
Structure

Using C Global Structure

ARMv8 Using C Local
Structure

ARMv8 Scaled Address

ARMv8 Unscaled Address

