
GNU Assembly Programming

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

GNU Assembly Programming: Outline

• Need for Assembly Programming

• Elements of Assembly

• GNU Assembly Program Directives

Need for Assembly Programming

• Writing computer booting codes.

• Writing code for the machines where no compiler exists.

• Writing interrupt handler codes.

• Writing low-level locking codes for multi-threaded programs.

• Writing the compiler code generator.

• Writing code for the computer that has very limited memory and the
compiler generated codes are not small and efficient enough.

• Writing codes to access low-level architectural features of a specialized
processor.

Hello World Assembly Program

[label:] [directive or instruction] // comment

Elements of Assembly

• Sections

• Symbols
‒ Labels

‒ Operands

• Assembler directives

• Instructions and pseudo-instructions

• Comments

Elements of Assembly

label

label

section

section

directive

directive

o
p

eran
d

in
st

ru
ct

io
n

Ps
eu

d
o

-i
n

s

comments

GNU Assembler Directives

• All assembler directives begin with a period (.)

• The rest of the name is composed of letters, usually in lower case

• Instructs the GNU Assembler during its assembly process on
• Controlling the Sections

• Allocating space for Variables and Constants

• Setting and manipulating symbols

• Filling and Aligning memory space

• Conditional assembly

• Defining Macros

GNU Assembler Directives: Sections

.data subsection
Tells the assembler to assemble the following statements onto the end of

the data subsection

.text subsection
Tells the assembler to assemble the following statements onto the end of

the text subsection.

.bss subsection
Tells the assembler to assemble the following statements onto the end of

the bss subsection.

.section name
Tells the assembler to create custom section. Rarely needed.

GNU Assembler Directives: Allocating Strings

.ascii "string"
Expects zero or more string literals separated by commas. It

assembles each string (with no automatic trailing zero byte) into

consecutive addresses.

.asciz "string"

.string "string"
Like .ascii, but each string is followed by a zero byte. The “z” in

.asciz stands for zero. .string is an alias for .asciz.

greet: .asciz “Hello World!”

Sets “Hello World!” to symbol greet.

GNU Assembler Directives: Allocating Integers
.word expressions

.long expressions
Takes zero or more expressions, separated by commas and emits 32-bit numbers

for each expression value and the address is advanced accordingly. If no

expression is given, the address is not advanced. .long and .word are the

synonymous.

.hword expressions

.short expressions
Like .word but emits a 16-bit numbers for each expression. .hword and .short are

synonymous.

.byte expressions
Like .word but emits 8-bit numbers for each expression.

GNU Assembler Directives: Allocating Floating
Point

.float flonums

.single flonums
Assembles zero or more 4-byte single precision floating point numbers on

ARM. .float and .single are synonyms.

.double flonums
Assembles zero or more 8-byte double precision floating point numbers on

ARM.

GNU Assembler Directives: Setting and Manipulating
Symbols

.equ symbol, expression

.set symbol, expression

This directive sets the value of symbol to expression.

.equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal

an error if symbol is already defined.

.equ max 1024

sets 1024 to symbol max.

.equiv max 2048

does not set 2048 to symbol max since it has already been set before.

GNU Assembler Directives: Setting and
Manipulating Symbols

.global symbol

.globl symbol
This directive makes the symbol visible to the linker. If you define

symbol in your partial program, its value is made available to other

partial programs that are linked with it.

.global main

makes main symbol visible to the linker.

GNU Assembler Directives: Filling Memory Space

.skip size, fill

.space size, fill
This directive emits size bytes, each of value fill. Both size and fill are

absolute expressions. If the comma and fill are omitted, fill is assumed

to be zero. .space and .skip are equivalent.

.skip 4, 0 advances the location counter by 4 and pads the

advanced bytes with 0.

GNU Assembler Directives: Aligning Memory Space

.align advance, fill, max
‒ Pad the location counter (in the current subsection) to a particular storage

boundary.

‒ advance specifies the number of low-order zero bits of the location counter

must have set after advancement.

‒ fill gives the fill value to be stored in the padding bytes.

‒ max is the maximum number of bytes that should be skipped by this

alignment directive. If doing the alignment would require skipping more

bytes than the specified maximum, then the alignment is not done at all.

Both .align and .skip directives can be used alternatively.

GNU Assembler Directives: Aligning Memory Space

.align 3, 0 advances the location counter until it’s a multiple of 8 and

if the location counter is already a multiple of 8, no change is

needed. If advance is successful, pads the advanced bytes with 0.

.align 2, 0 advances the location counter until it’s a multiple of 4 and

if the location counter is already a multiple of 4, no change is

needed. If advance is successful, pads the advanced bytes with 0.

.align 1, 0 advances the location counter until it’s a multiple of 2 and

if the location counter is already a multiple of 2, no change is

needed. If advance is successful, pads the advanced bytes with 0.

GNU Assembler Directives: Aligning Memory Space

.align 3, 0, 4 advances the location counter until it’s a multiple of 8

and if the location counter is already a multiple of 8, no change is

needed. If it requires more than 4 bytes to advance, it does not

advance at all. If advance is successful, pads the advanced bytes

with 0.

GNU Assembler Directives: Conditional Assembly

.if argument

.else

.endif

.if marks the beginning of a section of code which is only considered part

of the source program being assembled if the argument (which must be an

absolute expression) is non-zero. The end of the conditional section of code

must be marked by the .endif directive. Optionally, you may include code for

the alternative condition, flagged by the .else directive.

GNU Assembler Directives: Conditional Assembly

.set ARM8 1

.if ARM8

ldr x0, [x0, #8]

.else

ldr r0, [r0, #4]

.endif

.set ARM8 0

.if ARM8

ldr x0, [x0, #8]

.else

ldr r0, [r0, #4]

.endif

Assembles to

ldr x0, [x0, #8]

Assembles to

ldr r0, [r0, #4]

GNU Assembler Directives: Include

.include "file"
• This directive provides a way to include supporting files at specified points

in your source program. The code from file is assembled as if it followed

the point of the .include. Quotation marks are required around file.

• When the end of the included file is reached, assembly of the original file

continues.

• You can control the search paths used with the ‘-I’ command line

parameter.

• This is a good way to include files containing macros and other definitions.

It is similar to including header files in C and C++.

GNU Assembler Directives: Macro

.macro macname macargs ...
Begin the definition of a macro called macname. If your macro definition

requires arguments, specify their names after the macro name, separated by

commas or spaces. You can supply a default value for any macro argument

by following the name with ‘=default’.

.endm
Mark the end of a macro definition.

.exitm
Exit early from the current macro definition.

GNU Assembler Directives: Macro

Macro Definition

Macro Expansions

