ARM Processor Architecture

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

ARM Processor Architecture: Outline

 ARM Processor Architecture

* ARMvVS8 Exception and Privilege Levels
* ARMVS8 Security States

* ARMvVS8 Execution States

e ARMvV8 AArch64 Registers

 ARMv8 AArch64 Instruction Set Architecture
— Data Transfer: Load and Store
— Data Processing: Arithmetic, Logical, and Shift
— Branch: Conditional and Unconditional

ARM Processor Architecture
 ARM, primarily a RISC system with the following attributes:

— Moderate array of uniform registers

— Aload/store model of data processing in which operations only perform on
operands in registers and not directly in memory

— A uniform fixed-length instruction of 32 bits
— Separate arithmetic logic unit (ALU), Multiply, and Shifter units

— A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

— Auto-increment and auto-decrement addressing modes are used to improve
the operation of program loops

Development of the ARMv8 architecture

VFPv2 Thumb-2 VFPv3/v4 Key Eia;llrehﬁhﬂﬂ -A
TrustZone NEON Ll
SIMD

A32+T32 ISAs A64 ISAs
" Scalar FP (SP [Scalar FP (SP

and DP) and DP)

' Adv SIMD (SP 1 Adv SIMD (SP &
Float) DP Float)
AArch32 AArch64

Crypto Crypto

Generic Interrupt Controller

ARM CoreSight Multicore Debug and Trace

ARMvVS

with crypto ext

(CO rt EX- AS 3) Cortex-A53 processor ; ::

Floating-point

Processor JL L

. Level 1 Data
Instruction Management
Cache Cache waCC L Unit

" Performance Monitor j[Data Pmcessmg j Core

Unit Unit

AMBA 4 ACE or AMBA 5 CHI Coherent Bus Interface

ARMvV8 Exception and Privilege Levels

Execution occurs in 4 Exception Levels: ELO, EL1, EL2, and EL3.
Execution in exception level ELn usually corresponds to privilege level PLn.
The higher the number in ELn/PLn the higher the privilege.

Multiple exception/privilege levels support the concept of hierarchical
protection domains.

ARMv8 Exception Levels

o Typical example of what software runs at each exception level:

ELO Normal user applications, not privileged.

EL1 Operating system kernel, privileged.

EL2 Hypervisor, more privileged.

EL3 Low-level firmware, including the Secure Monitor, highly privileged

e N N
ELO Application] [Application Application] [Application

A AN vy

I L ™
EL1 Kernel Kernel

A% SN

ARMVS Security States

o Provides two security states: non secured state (normal world) and

secured state (secured world)

o Enables Guest OS in normal world runs
in parallel with a Trusted OS in secured
world on the same hardware.

o Enables a Hypervisor running in normal
world to host multiple Guest OS on the
same hardware.

o Secure Monitor acts as a gateway
between normal and secured world.

EL

=

EL1

EL2

EL3

Normal world Secure world
N7 \F
{Application} [Application Application} {Applicaﬁon | Secure firmware }
VAN J 4 .
1
[Guest 0S Guest 0S Trusted OS J
J \ J | \
i . -l No Hypervisor in
Hypervisor | Secure world
. |

p
Secure monitor }

ARMV8 Processor Execution States

o An ARMv8 processor can be configured as executing in one of two execution
states. AArch32 (32 bits) and AArch64 (64 bits).

o AArch32: 32-bit instructions, data, and address space. Uses the
instruction set, the register set, and the processor modes like ARMv?7.

o AArch64: 32-bit instructions but 64-bit data and address space. Uses
enhanced instruction set, a larger register set with wider registers, and
the processor modes that are different from ARMv?7.

AArch64 Exception Modes

Normal world Secure world

User

=

N (A4
Applicationj [Application Applicaticnj [Application Secure firmware J ELO
J

SVC, ABT. IRQ, \ ([1 (
FIQ, UND, SYS Guest 0OS Guest OS Trusted OS EL1

Hypervisor Secure world EL2

h No Hypervisor in
Hyp

AArch64 Exception Modes

Securi Privilege
Mode Function o "
state level
User (USR) Unprivileged mode in which most applications run Both PLO
FIQ Entered on an FIQ interrupt exception Both PL1
IRQ Entered on an IRQ interrupt exception Both PLI1
Supervisor Entered on reset or when a Supervisor Call instruction (SVC) Both PL1
(SVQ) is executed
Monitor (MON) Entered when the SMC instruction (Secure Monitor Call) is Secure only PL3
executed or when the processor takes an exception which 1s
configured for secure handling.
Provided to support switching between Secure and
Non-secure states.
Abort (ABT) Entered on a memory access exception Both PL1
Undef (UND) Entered when an undefined instruction 1s executed Both PLI1
System (SYS) Privileged mode, sharing the register view with User mode Both PL1
Hyp (HYP) Entered by the Hypervisor Call and Hyp Trap exceptions. Non-secure only PL2

AArch64 Register Set

Provides 31 double word (64 bit) general purpose registers, referred as
X0-x30, accessible at all times and in all Exception Levels.

Each double word register (x0-x30) can also be accessed as a word
register (w0-w30).

63 | 3231 0

AArch64 General Purpose Register Set

Register

XO0-X7 Arguments,/Results no
X8 a8 Indirect result location register no
X9-X15 9-15 Temporaries no

16 May hel: used by linker as a sc:ratc:h_ register; o
X1e (IPO) other times used as temporary register

17 May b'E.-‘ used by linker as a Ec:ratch_ register; no
X17 (IP1) other times used as temporary register

18 Platform regi'_.ater for platform independent no
¥1e code; otherwise a temporary register
X19-X27 1927 Saved yes
X228 (SP) 28 Stack Pointer yes
X29 (FP) 29 Frame Pointer yes
X30 (LR) 30 Link Register (return address) yes
KELR 31 The constant value O n.a.

AArch64 General Purpose Register Set

X0 - X7: Arguments or Results Registers
Arguments to a function are passed through x0 — X7 registers.
Results from a function are returned through x0 — X7 registers.

X8: Indirect Result Location Register

Results from a function is usually returned from a function to its caller through x0 to x7
registers if the function is returning directly to the caller.

There are some situations where a function does not call another function directly and the
called function also does not return to the caller directly. For example, a user mode
function calls a kernel function indirectly using a syscall and the kernel function does not
return 1o the user mode function. User mode function passes a syscall number using x8
register to a trap handler. Trap handler calls an appropriate kernel function based on the
syscall number. The kernel function returns the result to the user function using x8 reqister.

AArch64 General Purpose Register Set

X9 - X15: Temporary Registers

Functions are free to use these registers as temporary or scraftch registers. Functions do
not need to save and refrieve the current value of these reqisters before use and before
return respectively.

X16 and X17: Intfra-Procedure Call Scratch Registers

Linker often inserts codes before and after function codes in order to facilitate a function
call, which are called prologue and epilogue respectively.

Registers x16 and x17 can be used by the linker as the scratch registers in both prologue
and epilogue codes.

Regular function codes should avoid using both x16 and x17.

If a regular function uses x16 and x17 as the temporary registers, it should be aware of
the fact that the value it writes on these registers might not be seen by its called
functions since the linker might have used them as the scratch registers and modifies
their values in prologue or epilogue codes.

AArch64 General Purpose Register Set

X18: Platform Register

Register x18 is reserved for individual platform or OS specific codes in order to use it in
platform specific way. Platform independent codes must avoid using it.

If a platform chooses not to use x18 as its platform specific special register, platform
independent codes can use x18 register as a temporary register.

X19 - X27: Saved Register

A function must save the current value of these registers before using them and
restore the saved value before returning. It guarantees that the values in these
registers are preserved across multiple function calls.

AArch64 Special Registers: XZR and PC

(- Zero register
Special Program counter
registers) Stack pointer
Program Status Register
Exception Link Register

—

* There is no actual register numbered x31. Reading from xzr in code

XZR/WZR
PC
SP_ELO SP_EL1 SP_EL2 SP_EL3
SPSR_EL1 | | SPSR_EL2 | [SPSR_EL3
ELR_EL1 ELR_EL2 ELR_EL3
ELO EL1 EL2 EL3

reads 64 bit zeros and writing into xzr does not do anything.

 PC is not a general purpose register and is not accessible in code.

AArch64 Special Registers: Stack Pointer

—

Zero register XZR/WZR
Special Program counter PC
registers J Stack pointer| SP_ELO SP_EL1 SP_ELZ2 SP_EL3
Program Status Register SPSR_EL1 | | SPSR_EL2 | | SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
— ELO EL1 EL2 EL3

There are dedicated stack pointers (SP_ELO, SP_EL1, SP_EL2, and SP_EL3) for
each exception level.

SP refers to the current stack pointer.

Program running in exception levels EL1, EL2, and EL3 can use either the
dedicated stack pointer or ELO stack pointer.

« Suffix t (SP_ELn{) in the name indicates SP_ELO has bee selected.
« Suffix h (SP_ELnh) in the name indicates SP_EIn has been selected.

AArch64 Special Registers: Linked Register

8 Zero register XZR/WZR
Special Program counter PC
registers) Stack pointer| SP_ELO SP_EL1 SP_EL2 SP_EL3
Program Status Register SPSR_EL1 | [SPSR_EL2 [| SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
— ELO EL1 EL2 EL3

« There are dedicated linked register (ELR_EL1, ELR_EL2, and
ELR_EL3) for exception levels EL1, EL2, and EL3.

« Before taking into an exception level return address is saved into that
level's ELR.

« The saved return address is used from the level's ELR at the return from
the exception.

Negative Condition flag
Zero Condition flag
Carry Condition flag

< O N Z

Overflow Condition flag

AArCh64 SS Software Step bit
PSTATE Fields © 1 truton e

D Debug Mask bit

A SError mask bit

| IRQ mask bit

= FIQ mask bit

nRW Execution Mode (0=64-bit, 1=32-bit)

EL(2) Exception Level (00, 01, 10, 11)
SP SP Selector (O= SP_ELO, 1= SP_EIn)

AArch64 PSTATE Fields

* There is no dedicated register like CPSR in AArch32 to hold
the processor state or PSTATE Fields in AArch64, instead
they are independently accessible in groups.

« The PSTATE.{N, Z, C, V} fields can be accessed at ELO. All
other PSTATE fields can be executed at EL1 or higher and
are UNDEFINED at ELO.

AArch64 PSTATE Fields

 PSTATE fields are accessed using special-purpose registers,

NZCV Holds the condition flags

DAIF Specifies the current interrupt mask bits.

CurrentEL Holds the current Exception level.

SPSel At EL1 or higher, this selects between the SP for the current Exception

level (SP_EIn) and SP_ELO

* Read directly using Move to Register from System (MRS) instruction.
MRS <Xt>, NZCV
« Written directly using Move to System from Register (MSR) instruction.

MSR DAIF, <Xt>

AArch64 Condition Codes on NZCV Condition Flags

Code Symbol Condition Tested Comment
0000 EQ Z=1 Equal
0001 NE Z =0 Not equal
0010 CS/HS C=1 Carry set/unsigned higher or same
0011 CC/LO CcC=20 Carry clear/unsigned lower
0100 MI N =1 Minus/negative
0101 PL N =0 Plus/positive or zero
0110 VS V=1 Overflow
0111 \4e V=20 No overflow
1000 HI C=1ANDZ =0 Unsigned higher
1001 LS C=00RZ=1 Unsigned lower or same
1010 GE N=V Signed greater than or equal
[N=1ANDYV =1)
OR (N = 0 AND V = 0)]
1011 LT N # V Signed less than
[(N=1ANDYV = 0)
OR (N =0ANDYV = 1)]
1100 GT (Z =0)AND (N =V) Signed greater than
1101 LE (Z=1)0OR (N # V) Signed less than or equal
1110 AL — Always (unconditional)
1111 — — This instruction can only be executed
unconditionally

AArch64 Special Registers: SPSR

—

Special

registers ¢

Zero register

Program counter

Stack pointer| SP_ELO

Program Status Register

Exception Link Register

XZR/WZR
PC
SP_EL1 SP_EL2 SP_EL3
SPSR_EL1 | | SPSR_EL2 | [SPSR_EL3
ELR_ELL | | ELR_EL2 | [ELR_EL3
ELO EL1 EL2 EL3

« There are dedicated saved program status register (SPSR_ELA1,
SPSR_EL2, and SPSR_EL3) for exception levels EL1, EL2, and EL3.

« Before taking into an exception level current processor state (PSTATE)

is saved into that level's SPSR.

e The saved PSTATE is restored from the level's SPSR at the return from
the exception.

AArch64 Special Registers: SPSR

31302928 27 26 2524 2322212019181716 1514131211109 8 7 6 5 4 3 2 1 0

Nfz|C|V SSfIL D|A[I|F| [M| M[3:0]
N Negative result (N flag).
Z Zero result (Z) flag.
C Carry out (C flag).
\Y Overflow (V flag).
SS Software Step. Indicates whether software step was enabled when an exception
was taken.
IL Illegal Execution State bit. Shows the value of PSTATE.IL immediately before

the exception was taken.

AArch64 Special Registers: SPSR

31302928 27 26 2524 2322212019181716 1514131211109 8 7 6 5 4 3 2 1 0

N(Z|C|V SS|IL DIA|I|F M| M I[3:0]

D Process state Debug mask. Indicates whether debug exceptions from watchpoint,
breakpoint, and software step debug events that are targeted at the Exception level
the exception occurred in were masked or not.

A SError (System Error) mask bit.

| IRQ mask bit.

F FIQ mask bat.

M|4] Execution state that the exception was taken from. A value of 0 indicates
AArch64.

M]|3:0] Mode or Exception level that an exception was taken from.

AArch64 Special Registers: SPSR

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

N|Z|C|V SS|IL DIA]I|F M| MI[3:0]
M[3:0] Meaning

0b0000 ELO.

0b0100 EL1 with SP_ELO (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

0b1000 EL2 with SP_ELO (EL2t).

Ob1001 EL2 with SP_EL2 (EL2h).

AArch64 System Control Register

The System Control Register (SCTLR) is a register that controls standard
memory, system facilities and provides status information for functions that
are implemented in the core.

SCTLR is read and written using MRS instructions.

SCTLR can be configured with EE = 0 for little-endian and EE = 1 for big-
endian.

31 30 29 28 27 26 25 24 23 2221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0

EE | SAICIAM SCTLR_EL1
| ! | T T sho
nTWE UcT SED | CP15BEN
uUcl EOE WWXN nTWI DZE umaAa ITD

31 30 29 28 27 26 25 24 23 2221 2019181716 151413121110 9 8 7 6 5 4 3 2 1 0

SCTLR_EL2
SCTLR_EL3

EE | SA|[C|A|M

WXN

AArch64 Little-Endian

Data bytes in

memory
Byte 7
y 7
Byte 6
Byte 5
Byte 4
Byte 3
Byte 2
Byte 1
Byte 0
0
Memory
byte
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0
addresses

Data bytes in a 64-bit register, EE=0, Little-endian

AArch64 Big-Endian

Data bytes in

memory
Byte O <
7
Byte 1 <
Byte 2 N
Byte 3 <
Byte 4 <
Byte 5 <
Byte 6 <
Byte 7 <
0
Memory
byte
addresses
h 4 \ 4 A 4 \ 4 \ 4 A 4 \ 4 \ 4
Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte O

63

Data bytes in a 64-bit register, EE=1, Big-endian

ARM Processor 64-bit Architecture Word Register Set

« ARMG64 assembly language overloads instruction mnemonics and
distinguishes between the different forms of an instruction based on the
operand register names.

* For example, the ADD instructions below all have different opcodes, but
the programmer only has to remember one mnemonic and the assembler
automatically chooses the correct opcode based on the operands.

ADD WO, W1, W2 /[add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, #42 // add 64-bit immediate

ARMS8 A64 Data Transfer Instructions

Load and Store Instructions

LOP rt, rt2, [addr] rt2:rt = [addr],,

LDPSW Xt, Xt2, [addr] | Xt = [addr]3;; Xt2 = [addr+4]5
LO{UIR rt, [addr] rt = [addr],,

LD{U}R{B,H} Wt, [addr] Wt = [addr]}

LD{U}RS{B.H} rt, [addr] rt = [addr]

LD{U}RSW Xt, [addr] Xt = [addr]E

FRFM priop, addr Prefetch{addr, prfop)

5TP rt, rt2, [addr] [addr]5p = rt2:rt

ST{U}R rt, [addr] [addr],, = rt

ST{U}R{B,H} Wt, [addr] [addr],, = Wt

Addressing Modes (addr)

<P, LDPSW Xn{, #i7,.}] addr = Xn + iz, .0,
xxP,LDPSW [Xn], #iz,. addr=Xn; Xn+=il 0,
P, LDPSW [Xn, #ip,]! Kn+:i§|:+5_5:[]5; addr=2Xn
xx<R*,PRFM [Xn{, #i5, .} addr = Xn + if, 0,
xorR* [*n], #ig addr = Xn; Xn += i*
o™ [Xn, #ig]! ¥n += iT; addr = Xn
xxR*, PRFM [#n.Xm{, LSL #0|s}] addr = Xn + Xm <= s
wR* PRFM [*n,Wm {S U} XTW{ #0|s}] addr = Xn + Wm' < s
x=xR* PRFM [#n 2Xm, SXTX{ #0|s}] addr = Xn + XmT < s
xcUR* PRFM [Xn{, #ig}] addr = Xn += i™

LDR{SW} PRFM -rel,, addr = PC + reli; ,:0,

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr x7, [x3, x2]

ldr x7, [x3, #8]

ldr x7, [x3, x2]!

ldr x9, [x2, #8]!

ldr x7, [x3], #8

//Load x7 with a double word (8 bytes) from the address [x3 + x2],
//the address [x3 +x2] must be multiple of 8.

//Load x7 with a double word (8 bytes) from the address [x3 + 8],
//the address [x3 + #8] must be multiple of 8.

//Load x7 with a double word (8 bytes) from the address [x3 + x2],
//then store the address in x3, pre-indexed,
//the address [x2, x2] must be multiple of 8.

//Load x9 with a double word (8 bytes) from the address [x2 + 8],

//then store the address in x2, pre-indexed,
//the address [x2, #8] must be multiple of 8.

//Load x7 with a double word (8 bytes) from the address in [x3],

//then increment x3 by 8, post-indexed,
//the address [x3] must be multiple of 8.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr w7, [x3, x2] //Load x7 with a word (4 bytes) from the address [x3 + x2],
//the address [x3 +x2] must be multiple of 4.

ldr w7, [x3, #4] //Load x7 with a word (4 bytes) from the address [x3 + 4],
//the address [x3 + #4] must be multiple of 4.

ldr w7, [x3, x2]! //Load x7 with a word (4 bytes) from the address [x3 + x2],
//then store the address in x3, pre-indexed,
//the address [x2, x2] must be multiple of 4.

ldr w9, [x2, #4]! //Load x9 with a word (4 bytes) from the address [x2 + 4],

//then store the address in x2, pre-indexed,
//the address [x2, #4] must be multiple of 4.

ldr w7, [x3], #4 //Load x7 with a word (4 bytes) from the address in [x3],
//then increment x3 by 4, post-indexed,
//the address [x3] must be multiple of 4.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Half-
word and Byte Load

Ildrh X9, [XZ, #2]! //Load x9 with the half-word (2 bytes) from the address [x2 + 2] and zero extend x9,

//then store the address in x2, pre-indexed,
//the address [x2 + 2] must be multiple of 2.

|ldrsh x5, [x2] //Load x5 with the half-word (2 bytes) from the address [x2] and sign extend x5.
//the address [x2 + 2] must be multiple of 2.

ldrb x9, [x2, #1]! //Load x9 with 1 byte from the address [x2 + 1] and zero extend x9,

//then store the address in x2, pre-indexed,
//the address [x2, #1] must be multiple of 1.

ldrsb X5, [X2] //Load x5 with 1 byte from the address [x2] and sign extend x5,
//the address [x2] must be multiple of 1.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Store

str x7/, [X3, X2] //Store x7 (double word) at the address [x3 + x2]
//the address must be multiple of 8.

str x7, [x3, #8] //Store x7 (double word) at the address [x3 + 8]
//the address must be multiple of 8.

str x7, [x3, x2]! //Store x7 (double word) at the address [x3 + x2], then
//store the address in x3, pre-indexed, the address must be multiple of 8.

str x9, [x2, #8]! //Store x9 (double word) at the address [x2 + 8], then store
//the address in x2, pre-indexed, the address must be multiple of 8.

str x7, [x3], #8 //Store x7 (double word) at the address [x3] then
//increment x3 by 8, post-indexed, the address must be multiple of 8.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Store

strw/, [X3, W2] //Store w7 (word) at the address [x3 + w2)], the address must be multiple of 4.
str w7, [x3, #4] //Store w7 (word) at the address [x3 + 4], the address must be multiple of 4.
str w7, [x3, w2]! //Store w7 (word) at the address [x3 + w2], then

//store the address in x3, pre-indexed, the address must be multiple of 4.

str w9, [x2, #4]! //Store w9 (word) at the address [x2 + 4], then store
//the address in x2, pre-indexed, the address must be multiple of 4.

str w7, [x3], #4 //Store w7 (word) at the address [x3] then
//increment x3 by 4, post-indexed, the address must be multiple of 4.

ARMS8 A64 Data Transfer Instructions: 64-bit Scaled Half-

strh x9, [x2, #2]!

strb x9, [x2, #1]!

strh w9, [x2, #2]!

strb w9, [x2, #1]!

word and Byte Load

//Store the low half-word from x9 to the address [x2 + 2] and then store the address
//in x2, pre-indexed, the address must be multiple of 2.

//Store the low byte from x9 to the address [x2 + 1] and then store the address in x2,
//pre-indexed, the address must be multiple of 1.

//Store the low half-word from w9 to the address [x2 + 2] and then store the address
//in x2, pre-indexed, the address must be multiple of 2.

//Store the low byte from w9 to the address [x2 + 1] and then store the address in x2,
//pre-indexed, the address must be multiple of 1.

ARMS8 A64 Data Transfer Instructions: Unscaled
and Scaled

e Scaled
* LDR Wt/Xt, [Xn|SP{, #pimm}]
* STR Wt/Xt, [Xn|SP{, #pimm}]

* pimm value range:
e 32-bit: 0~ 16380, and pimm % 4 == 0 (is a multiple of 4)
* 64-bit: 0~ 32760, and pimm % 8 == 0 (is a multiple of 8)
 NEED to be a multiple of data access size, e.g., 4 or 8

e Unscaled

* LDUR Wt/Xt, [Xn|SP{, ##simm}]
* STUR Wt/Xt, [Xn|SP{, #simm}]

* simm value range: -256 ~ 255
* NO need to be a multiple of data access size.

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled

ldur x7, [x3, x2]
ldur x7, [x3, #2]

ldur x7, [x3, x2]!

ldur x9, [x2, #2]!

ldur x7, [x3], #2

Load

//Load x7 with double word from the address [x3 + x2]
//Load x7 with double word from the address [x3 + 2]

//Load x7 with double word from the address [x3 + x2], then
//store the address in x3, pre-indexed

//Load x9 with double word from the address [x2 + 2], then
//store the address in x2, pre-indexed

//Load x7 with double word from the address [x3] then
//increment x3 by 2, post-indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled Half-

ldurh x9, [x2, #2]!

|dursh x5, [x2]

ldurb x9, [x2, #1]!

|dursb x5, [x2]

word and Byte Load

//Load x9 with the half-word from the address [x2 + 2] and
//zero extend x9, then store the address in x2, pre-indexed

//Load x5 with the half-word from the address [x2] and sign
//extend x5.

//Load x9 with the byte from the address [x2 + 1] and zero
//extend x9, then store the address in x2, pre-indexed

//Load x5 with the byte from the address [x2] and sign
//extend x5.

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled

stur x7, [x3, x2]
stur x7, [x3, #2]

stur x7, [x3, x2]!

stur x9, [x2, #2]!

stur x7, [x3], #2

Store

//Store x7 (double word) at the address [x3 + x2]
//Store x7 (double word) at the address [x3 + 2]

//Store x7 (double word) at the address [x3 + x2], then
//store the address in x3, pre-indexed

//Store x9 (double word) at the address [x2 + 2], then store
//the address in x2, pre-indexed

//Store x7 (double word) at the address [x3] then
//increment x3 by 2, post indexed

ARMS8 A64 Data Transfer Instructions: 64-bit Unscaled
Half-word and Byte Store

sturh x9, [x2, #2]! //Store half-word of x9 at the address [x2 + 2], then store
//the address in x2, pre-indexed

sturb x9, [x2, #1]! //Store byte of x9 at the address [x2 + 1], then store
//the address in x2, pre-indexed

strh x9, [x2, #2]! //Store half-word of x9 at the address [x2 + 2], then store
//the address in x2, pre-indexed

strb x9, [x2, #1]! //Store byte of x9 at the address [x2 + 1], then store
//the address in x2, pre-indexed

ARMS8 A64 Data Transfer Instructions: Literal Pool Load

ldr x9, =label
//loads memory address referred by label to X9

.data
number: .word 100
text
|dr x2, =number //Loads the address of number into x2
ldr x2, [x2] //Loads the value of number into x2.

ARMS8 A64 Arithmetic Instructions

Arithmetic Instructions DPErﬂnd 2_ [npz}
ADC{S} rd, rm, rm rd =m + rm 4+ C

. all mm rm
ADD{S} rd, rn, op2 rd = rn + op2 5
ADR Xd, +rely, Xd = PC + rel® all rm, LSL #i rm <& |
ADRP Xd, *rels; Xd = PCgy,15:0y, + rel3s,»:0p, all rm, LSR #i; rm & i
CAAN rd, op2 rd + op2 5 all rm, ASR #iﬁ N
CAMP rd, op2 rd — op2 5 . 0 i .
MADD rd, rn. rm, ra rd — ra 4+ rn X rm logical rm, ROR #i; m e |
MNEG 5l o oo rd = — rn > rm arithmetic Wm, {SU}XTB{ #i;} Wm}, < i
MSUB rd, rn, rm, ra rd =ra — m = rm arithmetic Wm, {S,U}XTH{ #iy} Wm-';m <1
sl rd, m, rm rd = rm < rm arithmetic Wm, {S,U}XTW{ #i,} Wm’ < i
NEGL S} rd, op2 rd = —op2))) .)
NGC{5} rd, rm rd — —rm — ~C arithmetic Xm, {SUIXTX{ #i3} Xm® <
SBC{5} rd, rn, rm rd=m — rm — ~C arithmetic #iyo i
SDIW rd, rn, rm rd =rm = rm) arithmetic #i24 igz_uﬂu

Xd = X W W
SMADDL . W, Wm, Xa 2 Wi o< W AND,EOR ORR, TST #mask mask
SMNEGL Ad, Wn, Wm Xd = — Wn = Wm
SMSUBL *d, Wn, Wm, Xa|Xd = Xa — Wn x Wm
SMULH Xd, Xn, Xm Xd = (Xn % Xm),or.64 Keys
SAMULL ®d. Wn, Wm wd — Wn % Wm N Operand bit size (8, 16, 32 or 64)
SUB{sS} rd, rn, op2 rd = m - op2 S s Operand log byte size (0=byte,1=hword, 2=word,3=dword)
uDIv rd, rn, rm rd =rm = rm rd, rn, rm, rt General register of either size (Wn or Xn)
UmMaD v >d, Wn, Wim, Xa|Xd = Xa + Wn 2 Wm priop F‘{LD,LLET}L{I..3}{HEEP,5TRM}
UMNEGL Xd, Wn, Wm | Xd = — Wn x Wm {,sh} Optional halfword left shift (LSL #{16,32,48})
Ll Xd, Wi, Wm, Xa|xd = Xa — Wn >x Wm val®, val, val’ Value is sign /zero extended (? depends on instruction)
UMULH Xd, Xn, Xm Xd = (Xn % Xm)yor.ea - L
' ¥ = 3 > < Operation is signed

LIRS T Xd, Wn, Wm Xd = Wn = WWm

ARMS8 A64 Arithmetic Logic Instructions

add x0, x1, x2 //x0=x1+x2

adds x0, x1, x2 //x0=x1+x2, and set pstate flags

adc x0, x1, x2 //x0=x1+x2+carry

adcs x0, x1, x2 //x0=x1+x2+carry, and set pstate flags
sub x0, x1, x2 //x0=x1-x2

subs x0, x1, x2 //x0=x1-x2, and set pstate flags

sbc x0, x1, x2 //x0=x1-x2-1+carry

sbcs x0, x1, x2 //x0=x1-x2-1+carry, and set pstate flags
cmp x0, #imm //compare x0 with #imm

cmp x0, x1 //compare x0 with x1

ARMS8 A64 Arithmetic Logic Instructions

mul w0, wl, w2
mul x0, x1, x2

smulh x0, x1, x2
umulh x0, x1, x2

smull x0, w1, w2
umull x0, w1, w2

sdiv w0, wl, w2
sdiv x0, x1, x2
udiv w0, wl, w2
udiv x0, x1, x2

//wO=w1*w2 32-bit = 32-bit x 32-bit, lower 32 bits of result
//x0=x1*x2 64-bit = 64-bit x 64-bit, lower 64 bits of result

//x0=x1*x2, treats source operands as signed, upper 64 bits of result
//x0=x1*x2, treats source operands as unsigned, upper 64 bits of result

//x0=w1*w?2, treats source operands as signed, 64-bit = 32-bit x 32-bit
//x0=w1*w?2, treats source operands as unsigned, 64-bit = 32-bit x 32-bit

//wO0=w1-w2, treats source operadns as signed
//x0=x1-x2, treats source operadns as signed
//wO0=w1-w2, treats source oprands as unsigned
//x0=x1-x2, treats source oprands as unsigned

Logical and Move Instructions

AND{S}
ASR
ASR
BIC{S}
EON
EOR
LSL
LSL
LSR
LSR
MOV
MOV
MOVK
MOVN
MOVZ
VI
ORN
ORR
ROR
ROR
TST

r-dl

2 2afiaadaia

rmn,
rn,
rmn,
rn,
rmn,
rn,
rmn,
rn,

rn,

ARMS8 A64 Logical Instructions

Operand 2 (op2)

op2
rm

#i
op2
op2
op2
rm

#ig

Fm

rd = rn & op2
rd=rn % rm
rd =rn & i

rd = rn & ~op2
rd = rn & ~op2
rd = rn & op2

rd = rn <= rm

rd = rn <& i

rd =rn 3 rm
rd=rn 3 i

rd = rn

rd =i
rdps15.an = |
rd = ~{i? « sh)
rd = i’ < sh
rd = ~op2

rd = rn | ~op2
rd = rn | op2
rd =rn =i

all rm rm

all rm, LSL #i rm < |

all rm, LSR #i; rm 3

all rm, ASR #ig m 3

logical rm, ROR #ij rm g
arithmetic Wm, {S,U}XTB{ #i;} Wmj, < i
arithmetic Wm, {SU}XTH{ #i;} Wm] < i
arithmetic Wm, {S,U}XTW{ #i,} Wm’ < i
arithmetic Xm, {SUIXTX{ #iy} Xm' < i
arithmetic #i i

arithmetic #ing 1
AND,EOR,ORR, TST #mask mask

Keys

M Operand bit size (8, 16, 32 or 64)

5 Operand log byte size (O=byte, 1=hword,2=word, 3=dword)
rd, rn, rm, rt General register of either size (Wn or Xn)
prfop P{LD,LI,ST}L{1. 3}{KEEP,STRM}

{.sh} Optional halfword left shift (LSL #{16,32,48})

val®, val?, val’ Value is sign/zero extended (? depends on instruction)

X+ 35 <

Operation is signed

ARMS8 A64 Logical Instructions

and x0, x1, #bimm64 //x0 = x1 & #bimm64

and w0, w1, #bimm32 //w0 = w1l & #bimm32

and w0, w1, w2 //w0 =wl & w2

ands x0, x1, x2 //x0 = x1 & x2, and set flags (clears C and V)
orr X0, x1, #bimm®64 //x0 = x1 | #bimm64

orr x0, x1, x2 //x0=x1| x2

eor x0, x1, #bimm©64 //x0 = x1 @ #tbimm®64

eor x0, x1, x2 //x0 =x1 P x2

ARMS8 A64 Logical Instructions

asr x0, x1, #uimm
Isl xO, x1, #Huimm
Isr xO, x1, #uimm
ror X0, x1, #uimm

asr x0, x1, x2
Isl xO, x1, x2
Isr x0, x1, x2
ror X0, x1, x2

//x0 = arithmetic shift right x1 #uimm bits
//x0 = logical shift left x1 #uimm bits

//x0 = logical shift right x1 #uimm bits
//x0 = rotate right x1 #uimm bits

//x0 = arithmetic shift right x1 (x2 & 0x3f) bits
//x0 = logical shift left x1 (x2 & 0x3f) bits

//x0 = logical shift right x1 (x2 & 0x3f) bits
//x0 = rotate right x1 (x2 & 0x3f) bits

ARMS8 A64 Branch Instructions

Branch Instructions

B relyg PC = PC + reli.,:0;

Bee rely, if(cc) PC = PC + rely; ,:0;

BL relog X30 = PC + 4; PC += rel3;,:0,
BLR Xn X30 = PC + 4; PC = Xn

BR Xn PC = Xn

CBNZ m, rely; if(m # 0) PC += rel?, ,:0,

CBZ m, rel,, if(rm = 0) PC += rel},.,:0,

RET {Xn} PC = Xn

TBNZ m, #i, rely, if(rm. # 0) PC += relj; 5:0;
TBZ m, #i, relyg if(m, = 0) PC += relf; ,:0,

ARMS8 A64 Conditional Branch Instructions

b.cond label //Jump to program relative label if cond is true

cbz x1, label //Jump to program relative label if x1 is equal to zero

cbnz x1, label //Jump to program relative label if x1 is not equal to zero

tbz x1, #uimmé6, label //Jump to program relative label if bit number
//#uimm6 in x1 is equal to zero

tbnz x1, #uimmé, label //Jump to program relative label if bit number

//#uimm6 in x1 is not equal to zero

ARMS8 A64 Unconditional Branch Instructions

b l[abel

br x1

bl label

blr x1

ret Ir

//Jump to program relative label
//Jump to implement branch and loop

//Jump to address in x1
//Jump to implement branch and loop

//Jump to program relative label and write next instruction
//address in link register (Ir) or x30
//Jump to call a function

//Jump to address in x1 and write next instruction
//address in link register (Ir) or x30
//Jump to call a function and function address is in x1

//Jump to address in Ir or x30 and hints the CPU that this a
//subroutine return. Ir can be omitted in ret instruction.

	Slide 1: ARM Processor Architecture
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

