
ARM Processor Architecture

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

ARM Processor Architecture: Outline
• ARM Processor Architecture

• ARMv8 Exception and Privilege Levels

• ARMv8 Security States

• ARMv8 Execution States

• ARMv8 AArch64 Registers

• ARMv8 AArch64 Instruction Set Architecture

‒ Data Transfer: Load and Store

‒ Data Processing: Arithmetic, Logical, and Shift

‒ Branch: Conditional and Unconditional

ARM Processor Architecture
• ARM, primarily a RISC system with the following attributes:

‒ Moderate array of uniform registers

‒ A load/store model of data processing in which operations only perform on
operands in registers and not directly in memory

‒ A uniform fixed-length instruction of 32 bits

‒ Separate arithmetic logic unit (ALU), Multiply, and Shifter units

‒ A small number of addressing modes with all load/store addresses
determined from registers and instruction fields

‒ Auto-increment and auto-decrement addressing modes are used to improve
the operation of program loops

Development of the ARMv8 architecture

ARMv8
(Cortex-A53)

Processor

ARMv8 Exception and Privilege Levels

o Execution occurs in 4 Exception Levels: EL0, EL1, EL2, and EL3.

o Execution in exception level ELn usually corresponds to privilege level PLn.

o The higher the number in ELn/PLn the higher the privilege.

o Multiple exception/privilege levels support the concept of hierarchical
protection domains.

ARMv8 Exception Levels

o Typical example of what software runs at each exception level:
 EL0 Normal user applications, not privileged.

 EL1 Operating system kernel, privileged.
 EL2 Hypervisor, more privileged.
 EL3 Low-level firmware, including the Secure Monitor, highly privileged

ARMv8 Security States

o Provides two security states: non secured state (normal world) and
secured state (secured world)

o Enables Guest OS in normal world runs
in parallel with a Trusted OS in secured
world on the same hardware.

o Enables a Hypervisor running in normal
world to host multiple Guest OS on the
same hardware.

o Secure Monitor acts as a gateway
between normal and secured world.

ARMv8 Processor Execution States

o An ARMv8 processor can be configured as executing in one of two execution
states: AArch32 (32 bits) and AArch64 (64 bits).

o AArch32: 32-bit instructions, data, and address space. Uses the
instruction set, the register set, and the processor modes like ARMv7.

o AArch64: 32-bit instructions but 64-bit data and address space. Uses
enhanced instruction set, a larger register set with wider registers, and
the processor modes that are different from ARMv7.

AArch64 Exception Modes

AArch64 Exception Modes

AArch64 Register Set

o Provides 31 double word (64 bit) general purpose registers, referred as
x0-x30, accessible at all times and in all Exception Levels.

o Each double word register (x0-x30) can also be accessed as a word
register (w0-w30).

AArch64 General Purpose Register Set

X0 – X7: Arguments or Results Registers
Arguments to a function are passed through x0 – x7 registers.

Results from a function are returned through x0 – x7 registers.

X8: Indirect Result Location Register
Results from a function is usually returned from a function to its caller through x0 to x7

registers if the function is returning directly to the caller.

There are some situations where a function does not call another function directly and the

called function also does not return to the caller directly. For example, a user mode

function calls a kernel function indirectly using a syscall and the kernel function does not

return to the user mode function. User mode function passes a syscall number using x8
register to a trap handler. Trap handler calls an appropriate kernel function based on the

syscall number. The kernel function returns the result to the user function using x8 register.

AArch64 General Purpose Register Set

X9 - X15: Temporary Registers
Functions are free to use these registers as temporary or scratch registers. Functions do

not need to save and retrieve the current value of these registers before use and before

return respectively.

X16 and X17: Intra-Procedure Call Scratch Registers
Linker often inserts codes before and after function codes in order to facilitate a function

call, which are called prologue and epilogue respectively.
Registers x16 and x17 can be used by the linker as the scratch registers in both prologue

and epilogue codes.

Regular function codes should avoid using both x16 and x17.

If a regular function uses x16 and x17 as the temporary registers, it should be aware of

the fact that the value it writes on these registers might not be seen by its called

functions since the linker might have used them as the scratch registers and modifies
their values in prologue or epilogue codes.

AArch64 General Purpose Register Set

X18: Platform Register
Register x18 is reserved for individual platform or OS specific codes in order to use it in

platform specific way. Platform independent codes must avoid using it.

If a platform chooses not to use x18 as its platform specific special register, platform

independent codes can use x18 register as a temporary register.

X19 – X27: Saved Register
A function must save the current value of these registers before using them and

restore the saved value before returning. It guarantees that the values in these

registers are preserved across multiple function calls.

AArch64 General Purpose Register Set

AArch64 Special Registers: XZR and PC

• There is no actual register numbered x31. Reading from xzr in code

reads 64 bit zeros and writing into xzr does not do anything.

• PC is not a general purpose register and is not accessible in code.

AArch64 Special Registers: Stack Pointer

• There are dedicated stack pointers (SP_EL0, SP_EL1, SP_EL2, and SP_EL3) for

each exception level.

• SP refers to the current stack pointer.

• Program running in exception levels EL1, EL2, and EL3 can use either the

dedicated stack pointer or EL0 stack pointer.

• Suffix t (SP_ELnt) in the name indicates SP_EL0 has bee selected.

• Suffix h (SP_ELnh) in the name indicates SP_Eln has been selected.

AArch64 Special Registers: Linked Register

• There are dedicated linked register (ELR_EL1, ELR_EL2, and

ELR_EL3) for exception levels EL1, EL2, and EL3.

• Before taking into an exception level return address is saved into that

level’s ELR.

• The saved return address is used from the level’s ELR at the return from

the exception.

AArch64
PSTATE Fields

Name Description

N Negative Condition flag

Z Zero Condition flag

C Carry Condition flag

V Overflow Condition flag

SS Software Step bit

IL IL Execution state bit

D Debug Mask bit

A SError mask bit

I IRQ mask bit

F FIQ mask bit

nRW Execution Mode (0=64-bit, 1=32-bit)

EL(2) Exception Level (00, 01, 10, 11)

SP SP Selector (0= SP_ELO, 1= SP_Eln)

AArch64 PSTATE Fields

• There is no dedicated register like CPSR in AArch32 to hold

the processor state or PSTATE Fields in AArch64, instead

they are independently accessible in groups.

• The PSTATE.{N, Z, C, V} fields can be accessed at EL0. All

other PSTATE fields can be executed at EL1 or higher and

are UNDEFINED at EL0.

AArch64 PSTATE Fields
• PSTATE fields are accessed using special-purpose registers,

NZCV Holds the condition flags

DAIF Specifies the current interrupt mask bits.

CurrentEL Holds the current Exception level.

SPSel
At EL1 or higher, this selects between the SP for the current Exception

level (SP_Eln) and SP_EL0

• Read directly using Move to Register from System (MRS) instruction.

 MRS <Xt>, NZCV

• Written directly using Move to System from Register (MSR) instruction.

 MSR DAIF, <Xt>

AArch64 Condition Codes on NZCV Condition Flags

AArch64 Special Registers: SPSR

• There are dedicated saved program status register (SPSR_EL1,

SPSR_EL2, and SPSR_EL3) for exception levels EL1, EL2, and EL3.

• Before taking into an exception level current processor state (PSTATE)

is saved into that level’s SPSR.

• The saved PSTATE is restored from the level’s SPSR at the return from

the exception.

AArch64 Special Registers: SPSR

AArch64 Special Registers: SPSR

AArch64 Special Registers: SPSR

M[3:0] Meaning

0b0000 EL0.

0b0100 EL1 with SP_EL0 (ELt).

0b0101 EL1 with SP_EL1 (EL1h).

0b1000 EL2 with SP_EL0 (EL2t).

0b1001 EL2 with SP_EL2 (EL2h).

AArch64 System Control Register

• The System Control Register (SCTLR) is a register that controls standard

memory, system facilities and provides status information for functions that

are implemented in the core.

• SCTLR is read and written using MRS instructions.

• SCTLR can be configured with EE = 0 for little-endian and EE = 1 for big-

endian.

AArch64 Little-Endian

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte 0

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data bytes in a 64-bit register, EE=0, Little-endian

063

0

7

Data bytes in
memory

Memory
byte

addresses

AArch64 Big-Endian

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6

Byte 7

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Data bytes in
memory

Data bytes in a 64-bit register, EE=1, Big-endian

063

0

7

Memory
byte

addresses

ARM Processor 64-bit Architecture Word Register Set

• ARM64 assembly language overloads instruction mnemonics and

distinguishes between the different forms of an instruction based on the

operand register names.

• For example, the ADD instructions below all have different opcodes, but

the programmer only has to remember one mnemonic and the assembler

automatically chooses the correct opcode based on the operands.

ADD W0, W1, W2 // add 32-bit register

ADD X0, X1, X2 // add 64-bit register

ADD X0, X1, #42 // add 64-bit immediate

ARM8 A64 Data Transfer Instructions

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr x7, [x3, x2] //Load x7 with a double word (8 bytes) from the address [x3 + x2],

 //the address [x3 +x2] must be multiple of 8.

ldr x7, [x3, #8] //Load x7 with a double word (8 bytes) from the address [x3 + 8],

 //the address [x3 + #8] must be multiple of 8.

ldr x7, [x3, x2]! //Load x7 with a double word (8 bytes) from the address [x3 + x2],

 //then store the address in x3, pre-indexed,
 //the address [x2, x2] must be multiple of 8.

ldr x9, [x2, #8]! //Load x9 with a double word (8 bytes) from the address [x2 + 8],

 //then store the address in x2, pre-indexed,
 //the address [x2, #8] must be multiple of 8.

ldr x7, [x3], #8 //Load x7 with a double word (8 bytes) from the address in [x3],

 //then increment x3 by 8, post-indexed,
 //the address [x3] must be multiple of 8.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Load

ldr w7, [x3, x2] //Load x7 with a word (4 bytes) from the address [x3 + x2],

 //the address [x3 +x2] must be multiple of 4.

ldr w7, [x3, #4] //Load x7 with a word (4 bytes) from the address [x3 + 4],

 //the address [x3 + #4] must be multiple of 4.

ldr w7, [x3, x2]! //Load x7 with a word (4 bytes) from the address [x3 + x2],

 //then store the address in x3, pre-indexed,
 //the address [x2, x2] must be multiple of 4.

ldr w9, [x2, #4]! //Load x9 with a word (4 bytes) from the address [x2 + 4],

 //then store the address in x2, pre-indexed,
 //the address [x2, #4] must be multiple of 4.

ldr w7, [x3], #4 //Load x7 with a word (4 bytes) from the address in [x3],

 //then increment x3 by 4, post-indexed,
 //the address [x3] must be multiple of 4.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Half-
word and Byte Load

ldrh x9, [x2, #2]! //Load x9 with the half-word (2 bytes) from the address [x2 + 2] and zero extend x9,

 //then store the address in x2, pre-indexed,
 //the address [x2 + 2] must be multiple of 2.

ldrsh x5, [x2] //Load x5 with the half-word (2 bytes) from the address [x2] and sign extend x5.

 //the address [x2 + 2] must be multiple of 2.

ldrb x9, [x2, #1]! //Load x9 with 1 byte from the address [x2 + 1] and zero extend x9,

 //then store the address in x2, pre-indexed,
 //the address [x2, #1] must be multiple of 1.

 ldrsb x5, [x2] //Load x5 with 1 byte from the address [x2] and sign extend x5,

 //the address [x2] must be multiple of 1.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Store

str x7, [x3, x2] //Store x7 (double word) at the address [x3 + x2]

 //the address must be multiple of 8.

str x7, [x3, #8] //Store x7 (double word) at the address [x3 + 8]

 //the address must be multiple of 8.

str x7, [x3, x2]! //Store x7 (double word) at the address [x3 + x2], then

 //store the address in x3, pre-indexed, the address must be multiple of 8.

str x9, [x2, #8]! //Store x9 (double word) at the address [x2 + 8], then store

 //the address in x2, pre-indexed, the address must be multiple of 8.

str x7, [x3], #8 //Store x7 (double word) at the address [x3] then

 //increment x3 by 8, post-indexed, the address must be multiple of 8.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Store

str w7, [x3, w2] //Store w7 (word) at the address [x3 + w2)], the address must be multiple of 4.

str w7, [x3, #4] //Store w7 (word) at the address [x3 + 4], the address must be multiple of 4.

str w7, [x3, w2]! //Store w7 (word) at the address [x3 + w2], then

 //store the address in x3, pre-indexed, the address must be multiple of 4.

str w9, [x2, #4]! //Store w9 (word) at the address [x2 + 4], then store

 //the address in x2, pre-indexed, the address must be multiple of 4.

str w7, [x3], #4 //Store w7 (word) at the address [x3] then

 //increment x3 by 4, post-indexed, the address must be multiple of 4.

ARM8 A64 Data Transfer Instructions: 64-bit Scaled Half-
word and Byte Load

strh x9, [x2, #2]! //Store the low half-word from x9 to the address [x2 + 2] and then store the address

 //in x2, pre-indexed, the address must be multiple of 2.

strb x9, [x2, #1]! //Store the low byte from x9 to the address [x2 + 1] and then store the address in x2,

 //pre-indexed, the address must be multiple of 1.

strh w9, [x2, #2]! //Store the low half-word from w9 to the address [x2 + 2] and then store the address

 //in x2, pre-indexed, the address must be multiple of 2.

strb w9, [x2, #1]! //Store the low byte from w9 to the address [x2 + 1] and then store the address in x2,

 //pre-indexed, the address must be multiple of 1.

ARM8 A64 Data Transfer Instructions: Unscaled
and Scaled

• Scaled
• LDR Wt/Xt, [Xn|SP{, #pimm}]
• STR Wt/Xt, [Xn|SP{, #pimm}]
• pimm value range:

• 32-bit: 0 ~ 16380, and pimm % 4 == 0 (is a multiple of 4)
• 64-bit: 0 ~ 32760, and pimm % 8 == 0 (is a multiple of 8)
• NEED to be a multiple of data access size, e.g., 4 or 8

• Unscaled
• LDUR Wt/Xt, [Xn|SP{, #simm}]
• STUR Wt/Xt, [Xn|SP{, #simm}]
• simm value range: -256 ~ 255

• NO need to be a multiple of data access size.

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Load

ldur x7, [x3, x2] //Load x7 with double word from the address [x3 + x2]

ldur x7, [x3, #2] //Load x7 with double word from the address [x3 + 2]

ldur x7, [x3, x2]! //Load x7 with double word from the address [x3 + x2], then
 //store the address in x3, pre-indexed,

ldur x9, [x2, #2]! //Load x9 with double word from the address [x2 + 2], then
 //store the address in x2, pre-indexed

ldur x7, [x3], #2 //Load x7 with double word from the address [x3] then
 //increment x3 by 2, post-indexed

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled Half-
word and Byte Load

ldurh x9, [x2, #2]! //Load x9 with the half-word from the address [x2 + 2] and
 //zero extend x9, then store the address in x2, pre-indexed

ldursh x5, [x2] //Load x5 with the half-word from the address [x2] and sign
 //extend x5.

ldurb x9, [x2, #1]! //Load x9 with the byte from the address [x2 + 1] and zero
 //extend x9, then store the address in x2, pre-indexed

ldursb x5, [x2] //Load x5 with the byte from the address [x2] and sign
 //extend x5.

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Store

stur x7, [x3, x2] //Store x7 (double word) at the address [x3 + x2]

stur x7, [x3, #2] //Store x7 (double word) at the address [x3 + 2]

stur x7, [x3, x2]! //Store x7 (double word) at the address [x3 + x2], then
 //store the address in x3, pre-indexed

stur x9, [x2, #2]! //Store x9 (double word) at the address [x2 + 2], then store
 //the address in x2, pre-indexed

stur x7, [x3], #2 //Store x7 (double word) at the address [x3] then
 //increment x3 by 2, post indexed

ARM8 A64 Data Transfer Instructions: 64-bit Unscaled
Half-word and Byte Store

sturh x9, [x2, #2]! //Store half-word of x9 at the address [x2 + 2], then store
 //the address in x2, pre-indexed

sturb x9, [x2, #1]! //Store byte of x9 at the address [x2 + 1], then store
 //the address in x2, pre-indexed

strh x9, [x2, #2]! //Store half-word of x9 at the address [x2 + 2], then store
 //the address in x2, pre-indexed

strb x9, [x2, #1]! //Store byte of x9 at the address [x2 + 1], then store
 //the address in x2, pre-indexed

ARM8 A64 Data Transfer Instructions: Literal Pool Load

ldr x9, =label
 //loads memory address referred by label to X9

 .data
number: .word 100

 .text
 ldr x2, =number //Loads the address of number into x2

 ldr x2, [x2] //Loads the value of number into x2.

ARM8 A64 Arithmetic Instructions

ARM8 A64 Arithmetic Logic Instructions

add x0, x1, x2 //x0=x1+x2
adds x0, x1, x2 //x0=x1+x2, and set pstate flags
adc x0, x1, x2 //x0=x1+x2+carry
adcs x0, x1, x2 //x0=x1+x2+carry, and set pstate flags

sub x0, x1, x2 //x0=x1-x2
subs x0, x1, x2 //x0=x1-x2, and set pstate flags
sbc x0, x1, x2 //x0=x1-x2-1+carry
sbcs x0, x1, x2 //x0=x1-x2-1+carry, and set pstate flags

cmp x0, #imm //compare x0 with #imm
cmp x0, x1 //compare x0 with x1

ARM8 A64 Arithmetic Logic Instructions

mul w0, w1, w2 //w0=w1*w2 32-bit = 32-bit x 32-bit, lower 32 bits of result
mul x0, x1, x2 //x0=x1*x2 64-bit = 64-bit x 64-bit, lower 64 bits of result

smulh x0, x1, x2 //x0=x1*x2, treats source operands as signed, upper 64 bits of result
umulh x0, x1, x2 //x0=x1*x2, treats source operands as unsigned, upper 64 bits of result

smull x0, w1, w2 //x0=w1*w2, treats source operands as signed, 64-bit = 32-bit x 32-bit
umull x0, w1, w2 //x0=w1*w2, treats source operands as unsigned, 64-bit = 32-bit x 32-bit

sdiv w0, w1, w2 //w0=w1÷w2, treats source operadns as signed
sdiv x0, x1, x2 //x0=x1÷x2, treats source operadns as signed
udiv w0, w1, w2 //w0=w1÷w2, treats source oprands as unsigned
udiv x0, x1, x2 //x0=x1÷x2, treats source oprands as unsigned

ARM8 A64 Logical Instructions

ARM8 A64 Logical Instructions

and x0, x1, #bimm64 //x0 = x1 & #bimm64
and w0, w1, #bimm32 //w0 = w1 & #bimm32
and w0, w1, w2 //w0 = w1 & w2
ands x0, x1, x2 //x0 = x1 & x2, and set flags (clears C and V)

orr x0, x1, #bimm64 //x0 = x1 | #bimm64
orr x0, x1, x2 //x0 = x1 | x2

eor x0, x1, #bimm64 //x0 = x1 ⊕ #bimm64
eor x0, x1, x2 //x0 = x1 ⊕ x2

ARM8 A64 Logical Instructions

asr x0, x1, #uimm //x0 = arithmetic shift right x1 #uimm bits
lsl x0, x1, #uimm //x0 = logical shift left x1 #uimm bits
lsr x0, x1, #uimm //x0 = logical shift right x1 #uimm bits
ror x0, x1, #uimm //x0 = rotate right x1 #uimm bits

asr x0, x1, x2 //x0 = arithmetic shift right x1 (x2 & 0x3f) bits
lsl x0, x1, x2 //x0 = logical shift left x1 (x2 & 0x3f) bits
lsr x0, x1, x2 //x0 = logical shift right x1 (x2 & 0x3f) bits
ror x0, x1, x2 //x0 = rotate right x1 (x2 & 0x3f) bits

ARM8 A64 Branch Instructions

ARM8 A64 Conditional Branch Instructions

b.cond label //Jump to program relative label if cond is true

cbz x1, label //Jump to program relative label if x1 is equal to zero

cbnz x1, label //Jump to program relative label if x1 is not equal to zero

tbz x1, #uimm6, label //Jump to program relative label if bit number
//#uimm6 in x1 is equal to zero

tbnz x1, #uimm6, label //Jump to program relative label if bit number
//#uimm6 in x1 is not equal to zero

ARM8 A64 Unconditional Branch Instructions
b label //Jump to program relative label

//Jump to implement branch and loop

br x1 //Jump to address in x1
//Jump to implement branch and loop

bl label //Jump to program relative label and write next instruction
//address in link register (lr) or x30
//Jump to call a function

blr x1 //Jump to address in x1 and write next instruction
//address in link register (lr) or x30
//Jump to call a function and function address is in x1

ret lr //Jump to address in lr or x30 and hints the CPU that this a
//subroutine return. lr can be omitted in ret instruction.

	Slide 1: ARM Processor Architecture
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

