
Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 1

Function Calls Run-time Steps and Memory

Layout in x86 Architecture

By: Humayun Kabir

When I learned functions, I also learned that if a function calls another function the caller function loses

the control of execution to the called function and a new stack frame, inside the stack segment of the run-

time memory, gets wounded for the called function. When the called function returns, the stack frame

gets unwounded and the caller function gets the control back. For many years, I took these transitions

between the caller and the called functions as granted and did not dive deep to understand how these

are actually happening. There are two main reasons for my ignorance. One, I was still a good coder without

knowing the details of the behind the scene activities. And the other, I did not get a good resource that

elaborates the behind the scene activities in a lay man’s terms. In this article, I am going to fill the gap by

elaborating how the transitions between the caller and the called functions happen behind the scene. I

will use an example C code and walk through its step by step execution to explain the transitions. In order

to add visuals to my explanation, I will show related stack frames and their contents at various transition

levels.

In our everyday code, both the function call and the return from a function are a single statement or a

single step. That’s a very simplistic view of a function call and a function return. In reality, both need to

take many steps and use 3 CPU registers in x86 architecture at run-time. These CPU registers are Index

Pointer (%eip), Stack Base Pointer (%ebp), and Stack Pointer (%esp). Register %eip points to the next

instruction in the code to be executed. Register %eip, is also called instruction pointer. Execution control

of the code jumps from one function to another function when %eip register is loaded with the address

of the instruction of the target function. This is happening both at function call and at function return.

Register %ebp points to the base or start address of the current stack frame in the stack segment. For this

reason, %ebp register is also called frame base register. Register %esp points to the end of the current

stack frame, which is also the end of the stack segment. Stack segment starts from the higher memory

address and grows downward as the new stack frames are wounded one after another. A new stack frame

is wounded into the stack segment at every function call. Stack segment shrinks upwards as the stack

frames are unwounded one after another. A stack frame is unwounded from the stack segment at every

function return. Figure 1 shows the run-time memory layout and the associated CPU registers of an

executing code.

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 2

Heap

BSS

Data

Text/Code

Stack Frame 1

Stack Frame 2

Stack Frame 3

0xFFFFFFFF

0x00000000

%esp

%ebp

%eip

Figure 1

The caller and the called functions together need to perform 12 behind the scene run-time steps to get

the transitions of execution control between them. For C and C++ code, compiler inserts the assembly

instructions of these steps into the caller and the called functions.

1. Caller function pushes the function parameters of the called function, from right to left, onto
the stack. As the stack grows downward, the stack pointer (%esp) is decremented accordingly.

2. Caller function pushes the current %eip value, which points to the next instruction of the caller
function to be executed, onto the stack (%esp is decremented). Later, this is used as the return
address when the called function returns. Caller updates the %eip to point to the beginning of
the called function code. After step 2, caller function loses the control to the called function.

3. Called function pushes the current %ebp onto the stack (%esp is decremented) and updates the
%ebp to the current value of %esp to point to the base of its own stack frame. A new stack
frame for the called function gets wounded at this point.

4. Called function allocates memory from the stack for its local variables one after another. Each
allocation decrements %esp appropriately.

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 3

5. If the called function needs to use any CPU register, it saves the current value of that CPU
register onto the stack and decrements %esp accordingly. Steps 4 and 5 can happen
intermittently based on the called function’s code.

6. Called function finishes executing itself.

7. Before return the called function releases memory from its stack frame that was allocated for
its local variables. This operation shrinks the current stack frame by incrementing %esp value.
This step starts unwinding of current stack frame.

8. Before return the called function restores the CPU registers that were saved onto its stack
frame and releases the corresponding memory by incrementing %esp value. This operation also
shrinks the current stack frame. Steps 7 and 8 can happen intermittently in the order that took
place when the memory was allocated in steps 4 and 5. After the completion of steps 7 and 8
%esp points to the location of the saved %ebp of the previous stack frame.

9. Before return called function restores the saved %ebp (%ebp of the previous stack frame) of
the caller function to %ebp register and releases the corresponding stack memory by
incrementing %esp value appropriately. This step completes the unwinding of the called
function’s stack frame. After this step %esp points to the saved %eip (return address) of the
caller function.

10. Before return the called function restores the saved %eip (return address) of the caller function
to %eip register and releases the corresponding stack memory by incrementing %esp value
appropriately. After this step %esp points to the called function’s parameters that were pushed
by the caller function, if there were any. At this point called function returns or loses the control
to the caller function.

11. Caller function clears up the pushed parameters from the stack (increments %esp accordingly),
if there is any, before resuming its execution.

12. Caller function resumes its execution at the code pointed by %eip (return address).

I am using example C code shown in Figure 2 to demonstrate above behind the scene run-time steps. To

make the discussion simple, I am assuming the operating system is not running any other process while

running this code’s process. The OS does not use virtual memory and the running process gets full physical

memories in its address space. I am also ignoring the segments registers that point to the beginning of the

segments (Code, Data, and Stack etc.). The example code has three functions: main(), absSum(), and abs().

Execution starts with main() function. Function main() calls local function absSum() once and the C library

function printf() once. Function absSum() calls function abs() twice. Function abs() does not call any other

function. Figure 3 shows the call sequence of the example code.

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 4

Figure 2

main()

absSum()

abs() abs()
printf()

Figure 3

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 5

Figure 4 shows the run-time memory layout when the code has been just loaded into the memory.

Heap

BSS

Data

Text/Code

0xFFFFFFFF

0x00000000

%esp = 0xFFFFFFFF

%ebp = 0

%eip = main

Figure 4

I am assuming that the code has been loaded into Text/Code segment starting at 0x00000000. As the

example code has no global or static variable, initialized or uninitialized, both Data and BSS segments are

empty. As this code does not allocate memory dynamically, the Heap segment is also empty. I am showing

Heap, Data and BSS segments in Figure 3 for sanity reason. Initially, the Stack segment is also empty. Am

assuming that the stack segment started from 0xFFFFFFFF. Initially, %esp register points to 0xFFFFFFFF

address, %eip register points to the memory address in the Code segment corresponds to function main().

In the real world, %eip register points to the memory address of an assembly code instruction (C compiler

translates C code into assembly code). In order to make the discussion simple to follow for C programmers,

%eip register in this article points to the imaginary addresses of C statements.

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 6

Figure 5 shows the run-time memory layout after main() function has been called and it is about to call

absSum() function.

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp

%eip = absSum

a

b

c

Old %eip

%ebp = main

Figure 5

In order to make the discussion simple, I assume initial value of both %eip and %ebp are zero (not pointing

to anything). The caller of function main() skipped step 1 as no parameter has been passed into main().

The caller of main() pushed current %eip value (0) onto the stack and loaded the address of the first

instruction of function main() into %eip register (step 2). Function main() function got the control of

execution and pushed the current %ebp value (0) onto the stack and updated %ebp to the base of its own

frame stack (step 3). Function main() allocated memory for its local variables a, b, and c (step 4). After

step 4, register %ebp points to the base or the start of the frame stack related to main() function, register

%eip points to the memory address in the Code segment that corresponds to absSum() function call inside

function main(), and register %esp points to the end of the current stack segment (i.e., the address in the

stack segment corresponds to main() function’s local variable c).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 7

Figure 6 shows the run-time memory layout after function absSum() has been called and it is about to

call function abs(d).

Heap

BSS

Data

Text/Code

0xFFFFFFFF

0x00000000

%esp

Old %ebp (main)

%eip = abs(d)

a

Old %eip (printf)

%ebp = absSum

f

%ebp main

0

0

b

c

param #d

param #e

printf

Figure 6

Function main() pushed parameters d and e as it has called function absSum() (step 1). Function main()

also pushed the current %eip (printf) onto the stack and loaded the address of the first instruction of

function absSum() into %eip register (step 2). Function absSum() got the control of execution and pushed

main() function’s %ebp onto the stack and updated %ebp to the base of its own frame stack (step 3).

Function absSum() allocated memory for its local variable f (step 4). After step 4, register %ebp points to

the base of the frame stack related to absSum() function, register %eip points to the memory address in

the Code segment that corresponds to abs(d) function call inside absSum() function, and register %esp

points to the end of the current stack segment (i.e., the address corresponds to absSum() function’s local

variable f).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 8

Figure 7 shows the run-time memory layout after abs(d) function has been called and it is about to

return.

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp (absSum)

%eip = return h

a

b

c

Old %eip (abs(e))

%ebp = abs(d)

param #d

param #e

f

printf

%ebp main

param # g

abs(e)

%ebp absSum

h

Figure 7

Function absSum() pushed parameter g, as it has called function abs(d) (step 1). Function absSum() also

pushed the current %eip (abs(e)) onto the stack and loaded the address of the first instruction of function

abs(d) into %eip register (step 2). Function abs(d) got the control of execution and pushed absSum()

functions %ebp onto the stack and updated %ebp to the base of its own frame stack (step 3). Function

abs(d) allocated memory for its local variable h (step 4). After step 4, register %ebp points to the base of

the frame stack related to abs(d) function, register %eip points to the memory address in the Code

segment that corresponds to return h inside abs(d) function, and register %esp points to the end of the

current stack segment (i.e., the address corresponds to abs(d) function’s local variable h).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 9

Figure 8 shows the run-time memory layout after function abs(d) has returned and function absSum() is

about to call function abs(e).

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp (main)

%eip = abs(e)

a

b

c

Old %eip (printf)

%ebp = absSum

param #d

param #e

f

printf

%ebp main

Figure 8

Function abs(d) did not use any CPU register and skipped step 5. Function abs(d) has finished its execution

(step 6). Function abs(d) released memory from its stack frame that was allocated for its local variable h

(step 7). Function abs(d) skipped step 8. Function abs(d) restored %ebp register to point the base of the

frame stack of function absSum() (step 9). The stack frame related to function abs(d) has been

unwounded. Function abs(d) restored %eip register to point to the saved return address (abs(e)) of

function absSum() (step 10). Function absSum() got the control back and cleared the pushed parameter

g from the stack (step 11). After step 11, register %esp points to the end of the current stack segment

(i.e., the address corresponds to absSum() function’s local variable f).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 10

Figure 9 shows the run-time memory layout after abs(e) function has been called by function absSum()

and function abs(e) is about to return.

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp (absSum)

%eip = return h

a

b

c

Old %eip (return f)

%ebp = abs(e)

param #d

param #e

f

printf

%ebp main

param # g

return f

%ebp absSum

h

Figure 9

Function absSum() pushed parameter g, as it has called function abs(e) (step 1). Function absSum() also

pushed the current %eip (return f) onto the stack and loaded the address of the first instruction of function

abs(e) into %eip register (step 2). Function abs(e) got the control of execution and pushed absSum()

functions %ebp onto the stack and updated %ebp to the base of its own frame stack (step 3). Function

abs(e) allocated memory for its local variable h (step 4). After step 4, register %ebp points to the base of

the frame stack related to abs(e) function, register %eip points to the memory address in the Code

segment that corresponds to return h inside abs(e) function, and register %esp points to the end of the

current stack segment (i.e., the address corresponds to abs(e) function’s local variable h).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 11

Figure 10 shows the run-time memory layout after function abs(e) has returned to function absSum()

and function absSum() is about to return to function main().

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp (main)

%eip = return f

a

b

c

Old %eip (printf)

%ebp = absSum

param #d

param #e

f

printf

%ebp main

Figure 10

Function abs(e) did not use any CPU register and skipped step 5. Function abs(e) has finished its execution

(step 6). Function abs(e) released memory from its stack frame that was allocated for its local variable h

(step 7). Function abs(e) skipped step 8. Function abs(e) restored %ebp register to point to the base of

the frame stack of function absSum() (step 9). The stack frame related to function abs(e) has been

unwounded. Function abs(e) restored %eip register to point to the saved return address (return f) of

function absSum()(step 10). Function absSum() got the control of execution and cleared the pushed

parameter g from the stack (step 11). After step 11, register %esp points to the end of the current stack

segment (i.e., the address corresponds to absSum() function’s local variable f).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 12

Figure 11 shows the run-time memory layout after function absSum() has returned to function main()

and function main() is about to call function printf().

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp

%eip = printf

a

b

c

Old %eip

%ebp = main

Figure 11

Function absSum() did not use any CPU register and skipped step 5. Function absSum() has finished its

execution (step 6). Function absSum() released memory from its stack frame that was allocated for its

local variable f (step 7). Function absSum() skipped step 8. Function absSum() restored %ebp register to

point to the base of the frame stack of function main() (step 9). The stack frame related to function

absSum() has been unwounded. Function absSum() restored %eip register to point the saved return

address (printf) of function main() (step 10). Function main() got the control of execution and cleared the

pushed parameters d and e from the stack (step 11). After step 11, register %esp points to the end of the

current stack segment (i.e., the address corresponds to main() function’s local variable c).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 13

Figure 12 shows the run-time memory layout after printf() function has been called by function main()

and function printf() is about to return.

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp (main)

%eip = return printf

a

b

c

Old %eip (return 0)

%ebp = printf

param #1

param #2

return 0

%ebp main

Figure 12

Function main() pushed parameters #1 and #2 as it has called function printf() (step 1). Function main()

also pushed the current %eip (return 0) onto the stack and loaded the address of the first instruction of

function printf() into %eip register (step 2). Function printf() got the control of execution and pushed

main() functions %ebp onto the stack and updated %ebp to the base of its own frame stack (step 3).

Function printf() allocated memory for its local variables (step 4). Figure 11 does not show printf()

function’s local variables. Function printf() might have used CPU registers. It saved the current value of

the registers onto the stack (step 5). Figure 11 does not show printf() function’s saved registers either.

After step 5, register %ebp points to the base of the frame stack related to printf() function, register %eip

points to the memory address in the Code segment that corresponds to return inside printf() function,

and register %esp points to the end of the current stack segment (i.e., the address corresponds to printf()

function’s local variables).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 14

Figure 13 shows the run-time memory layout after function printf() has returned to function main() and

function main() is about to return.

Heap

BSS

Data

Text/Code

0

0

0xFFFFFFFF

0x00000000

%esp

Old %ebp

%eip = return 0

a

b

c

Old %eip

%ebp = main

Figure 13

Function printf() might have used CPU registers saved their previous value onto the stack in step 5.

Function printf() has finished its execution (step 6). Function printf() has released memory from its stack

frame that was allocated for its local variables (step 7). Functions printf() restored saved CPU register

values and released corresponding stack memory (step 8). Function printf() restored %ebp register to

point to the base of the frame stack of function main() (step 9). The stack frame related to function printf()

has been unwounded. Function printf() restored %eip register to point to the saved return address (return

0) of function main() (step 10). Function main() got the control of execution and cleared the pushed

parameters #1 and #2 from the stack (step 11). After step 11, register %esp points to the end of the

current stack segment (i.e., the address corresponds to main() function’s local variable c).

Copyright © 2021 Humayun Kabir, Professor, Vancouver Island University, Canada 15

Figure 14 shows run-time memory layout after function main() has returned.

Heap

BSS

Data

Text/Code

0xFFFFFFFF

0x00000000

%esp = 0xFFFFFFFF

%ebp = 0

%eip = 0

Figure 14

Function main() did not use any CPU register and skipped step 5. Function main() has finished its

execution (step 6). Function main() released memory from its stack frame that was allocated for its local

variables a, b, and c (step 7). Functions main() skipped step 8. Function main() restored %ebp register to

point nothing (step 9). The stack frame related to function main() has been completely unwounded.

Function main() restored %eip register to point to nothing (step 10). The caller of function main() skipped

step 11. After step 10, register %esp points to the end of the current stack segment (i.e., the address

0xFFFFFFFF).

Using Figures 4 to 14, I have demonstrated how the behind the scene run-time steps are taken place and

how the stack segment grows and shrinks along with the execution of the example code. I have

demonstrated the new stack frames that are wounded at function calls as well as the contents of these

stack frames. I have demonstrated the smooth unwinding of the stack frames at function returns. I have

demonstrated how the execution control jumps from the caller functions to the called functions by loading

%eip register with the address of the instruction of the called functions. I have demonstrated how the

execution control comes back from the called functions to the caller functions by loading %eip register

with the address of the next instruction of the caller functions. I will consider my effort successful only if

the readers of this article get a clear understanding of these steps and concepts. Please, feel free to reach

me at humayun.kabir@viu.ca for comments and questions.

mailto:humayun.kabir@viu.ca

