
©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 C++ enables several functions of the same name to 
be defined, as long as they have different signatures.

 This is called function overloading.

 The C++ compiler selects the proper function to call 
by examining the number, types and order of the 
arguments in the call.

 Function overloading is used to create several 
functions of the same name that perform similar 
tasks, but on different data types.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 Figure 6.20 uses overloaded square functions to 
calculate the square of an int and the square of a 
double.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



How the Compiler Differentiates Among Overloaded 
Functions 
 Overloaded functions are distinguished by their signatures.
 A signature is a combination of a function’s name and its 

parameter types (in order).
 The compiler encodes each function identifier with the 

types of its parameters (sometimes referred to as name 
mangling or name decoration) to enable type-safe linkage.
◦ Ensures that the proper overloaded function is called and that the 

types of the arguments conform to the types of the parameters.

 Figure 6.21 was compiled with GNU C++. 
 Rather than showing the execution output of the program, 

we show the mangled function names produced in 
assembly language by GNU C++. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 For GNU C++, each mangled name (other than main) 
begins with two underscores (__) followed by the letter Z, 
a number and the function name. 
◦ The number specifies how many characters are in the function’s 

name. 

 The compiler distinguishes the two square functions by 
their parameter lists—one specifies i for int and the 
other d for double. 

 The return types of the functions are not specified in the 
mangled names. 

 Overloaded functions can have different return types, but if 
they do, they must also have different parameter lists. 

 Function-name mangling is compiler specific. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 If the program logic and operations are identical for 
each data type, overloading may be performed more 
compactly and conveniently by using function 
templates.

 You write a single function template definition.

 Given the argument types provided in calls to this 
function, C++ automatically generates separate 
function template specializations to handle each 
type of call appropriately. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



 Figure 6.22 defines a maximum function that determines 
the largest of three values.

 All function template definitions begin with the template
keyword followed by a template parameter list enclosed in 
angle brackets (< and >).

 Every parameter in the template parameter list is preceded 
by keyword typename or keyword class.

 The type parameters are placeholders for fundamental 
types or user-defined types.
◦ Used to specify the types of the function’s parameters, to specify the 

function’s return type and to declare variables within the body of the 
function definition.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 Figure 6.23 uses the maximum function template to 
determine the largest of three int values, three double
values and three char values, respectively. 

 Separate functions are created as a result of the calls—
expecting three int values, three double values and three 
char values, respectively. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.


