
©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 C++ enables several functions of the same name to 
be defined, as long as they have different signatures.

 This is called function overloading.

 The C++ compiler selects the proper function to call 
by examining the number, types and order of the 
arguments in the call.

 Function overloading is used to create several 
functions of the same name that perform similar 
tasks, but on different data types.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 Figure 6.20 uses overloaded square functions to 
calculate the square of an int and the square of a 
double.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



How the Compiler Differentiates Among Overloaded 
Functions 
 Overloaded functions are distinguished by their signatures.
 A signature is a combination of a function’s name and its 

parameter types (in order).
 The compiler encodes each function identifier with the 

types of its parameters (sometimes referred to as name 
mangling or name decoration) to enable type-safe linkage.
◦ Ensures that the proper overloaded function is called and that the 

types of the arguments conform to the types of the parameters.

 Figure 6.21 was compiled with GNU C++. 
 Rather than showing the execution output of the program, 

we show the mangled function names produced in 
assembly language by GNU C++. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 For GNU C++, each mangled name (other than main) 
begins with two underscores (__) followed by the letter Z, 
a number and the function name. 
◦ The number specifies how many characters are in the function’s 

name. 

 The compiler distinguishes the two square functions by 
their parameter lists—one specifies i for int and the 
other d for double. 

 The return types of the functions are not specified in the 
mangled names. 

 Overloaded functions can have different return types, but if 
they do, they must also have different parameter lists. 

 Function-name mangling is compiler specific. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 If the program logic and operations are identical for 
each data type, overloading may be performed more 
compactly and conveniently by using function 
templates.

 You write a single function template definition.

 Given the argument types provided in calls to this 
function, C++ automatically generates separate 
function template specializations to handle each 
type of call appropriately. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



 Figure 6.22 defines a maximum function that determines 
the largest of three values.

 All function template definitions begin with the template
keyword followed by a template parameter list enclosed in 
angle brackets (< and >).

 Every parameter in the template parameter list is preceded 
by keyword typename or keyword class.

 The type parameters are placeholders for fundamental 
types or user-defined types.
◦ Used to specify the types of the function’s parameters, to specify the 

function’s return type and to declare variables within the body of the 
function definition.

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



 Figure 6.23 uses the maximum function template to 
determine the largest of three int values, three double
values and three char values, respectively. 

 Separate functions are created as a result of the calls—
expecting three int values, three double values and three 
char values, respectively. 

©1992-2017 by Pearson Education, Inc. 
All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.



©1992-2017 by Pearson Education, Inc. All Rights Reserved.


