Function Overloading
and Template Function

6.16 Function Overloading

» C++ enables several functions of the same name to
be defined, as long as they have different signatures.

» This is called function overloading.

» The C++ compiler selects the proper function to call
by examining the number, types and order of the
arguments in the call.

» Function overloading is used to create several
functions of the same name that perform similar
tasks, but on different data types.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

G Good Programming Practice 6.6
W Overloading functions that perform closely related tasks
can make programs more readable and understandable.

E!—L..

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

6.16 Function Overloading (cont.)

» Figure 6.20 uses overloaded square functions to
calculate the square of an int and the square of a

double.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

oo ~Nonnh WN =—

10
|
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 6.20: fig06_20.cpp

// Overloaded square functions.
#include <iostream>

using namespace std;

// function square for int values

int square(int x) {
cout << "square of integer " << X << " 1is ";
return x * X;

}

// function square for double values

double square(double y) {
cout << "square of double " <<y << " is ";
return y * y;

}

int main() {
cout << square(7); // calls int version
cout << endl;
cout << square(7.5); // calls double version
cout << endl;

}

Fig. 6.20 | Overloaded square functions. (Part | of 2.)

B

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

square of integer 7 1is 49
square of double 7.5 is 56.25

Fig. 6.20 | Overloaded square functions. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

6.16 Function Overloading (cont.)

How the Compiler Differentiates Among Overloaded
Functions

» Overloaded functions are distinguished by their signatures.

» A signature is a combination of a function’s name and its
parameter types (in order).

» The compiler encodes each function identifier with the
types of its parameters (sometimes referred to as name
mangling or name decoration) to enable type-safe linkage.

o Ensures that the proper overloaded function is called and that the
types of the arguments conform to the types of the parameters.

» Figure 6.21 was compiled with GNU C++.

» Rather than showing the execution output of the program,
we show the mangled function names produced in
assembly language by GNU C++.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

I // Fig. 6.21: fig06_21.cpp

2 // Name mangling to enable type-safe 1linkage.
3

4 // function square for int values

5 1int square(int x) {

6 return x * Xx;

7 1}

8

9 // function square for double values
10 double square(double y) {

11 return y * vy;

12 }

13

14 // function that receives arguments of types
15 // int, float, char and int&
16 void nothingl(int a, float b, char c, int& d) { }

I8 // function that receives arguments of types

19 // char, int, float& and double&

20 1int nothing2(char a, int b, float& c, double& d) {
21 return 0O;

22 }

24 1int main() { }

Fig. 6.21 | Name mangling to enable type-safe linkage. (Part 1 of 2.)

_\ ©1992-2017 by Pearson Education, Inc. All Rights Reserved.

__Zbsquarei
__Z6bsquared
__Z8nothinglifcRi
__Z8nothing2ciRfRd
main

Fig. 6.21 | Name mangling to enable type-safe linkage. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

6.16 Function Overloading (cont.)

» For GNU C++, each mangled name (other than main)
begins with two underscores (__) followed by the letter Z,
a number and the function name.

> The number specifies how many characters are in the function’s
name.

» The compiler distinguishes the two square functions by
their parameter lists—one specifies i for int and the
other d for double.

» The return types of the functions are not specified in the
mangled names.

» Overloaded functions can have different return types, but if
they do, they must also have different parameter lists.

» Function-name mangling is compiler specific.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

2o Common Programming Error 6.9
Creating overloaded functions with identical parameter
lists and different return types is a compilation error.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

?x Common Programming Error 6.10

!zﬁ A function with default arguments omitted might be
called identically to another overloaded function; this is
a compilation error. For example, having a program that
contains both a function that explicitly takes no argu-
ments and a function of the same name that contains all
default arguments results in a compilation error when an
attempt is made to use that function name in a call pass-
ing no arguments. The compiler cannot determine which
version of the function to choose.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

6.17 Function Templates

» If the program logic and operations are identical for
each data type, overloading may be performed more
compactly and conveniently by using function
templates.

» You write a single function template definition.

» Given the argument types provided in calls to this
function, C++ automatically generates separate
function template specializations to handle each
type of call appropriately.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

6.17 Function Templates (cont.)

>

Figure 6.22 defines a maximum function that determines
the largest of three values.

All function template definitions begin with the template
keyword followed by a template parameter list enclosed in
angle brackets (< and >).

Every parameter in the template parameter list is preceded
by keyword typename or keyword class.

The type parameters are placeholders for fundamental

types or user-defined types.

o Used to specify the types of the function’s parameters, to specify the
function’s return type and to declare variables within the body of the
function definition.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

I // Fig. 6.22: maximum.h

2 // Function template maximum header.

3 template <typename T> // or template<class T>

4 T maximum(T valuel, T value?2, T value3) {

5 T maximumValue{valuel}; // assume valuel is maximum

6

7 // determine whether value?2 is greater than maximumValue
8 if (value2 > maximumValue) {

9 maximumValue = valueZ2;

10 }

11

12 // determine whether value3 is greater than maximumValue
13 if (value3 > maximumValue) {

14 maximumValue = value3;

15 }

16

17 return maximumValue;

18 }

Fig. 6.22 | Function template maximum header.

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

6.19 Function Templates (cont.)

» Figure 6.23 uses the maximum function template to
determine the largest of three int values, three double
values and three char values, respectively.

» Separate functions are created as a result of the calls—
expecting three int values, three double values and three
char values, respectively.

©1992-2017 by Pearson Education, Inc.
All Rights Reserved.

1 // Fig. 6.23: fig06_23.cpp

2 // Function template maximum test program.

3 #include <iostream>

4 #include "maximum.h™ // include definition of function template maximum
5 using namespace std;

6

7 1int main() {

8 // demonstrate maximum with int values

9 cout << "Input three integer values: ";
10 int intl, int2, int3;

11 cin >> intl >> int2 >> int3;

12

13 // invoke int version of maximum

14 cout << "The maximum integer value is: "
15 << maximum(intl, int2, int3);

16

17 // demonstrate maximum with double values
I8 cout << "\n\nInput three double values: ";
19 double doublel, double2, double3;
20 cin >> doublel >> double?2 >> double3;
21

Fig. 6.23 | Function template maximum test program. (Part | of 2.)

\ ©1992-2017 by Pearson Education, Inc. All Rights Reserved.

22 // invoke double version of maximum

23 cout << "The maximum double value is: "

24 << maximum(doublel, double?2, double3);
25

26 // demonstrate maximum with char values
27 cout << "\n\nInput three characters: ";

28 char charl, char2, char3;

29 cin >> charl >> char2 >> char3;

30

31 // invoke char version of maximum

32 cout << "The maximum character value is: "
33 << maximum(charl, char2, char3) << endl;
34 }

Input three integer values: 1 2 3
The maximum integer value is: 3

Input three double values: 3.3 2.2 1.1
The maximum double value 1is: 3.3

Input three characters: A CB
The maximum character value is: C

Fig. 6.23 | Function template maximum test program. (Part 2 of 2.)

©1992-2017 by Pearson Education, Inc. All Rights Reserved.

