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Modular Programing with Abstraction

• A modular design consists of a set of modules, which 

are developed and tested separately.

• C programming language supports modular design 

through library modules composed of functions.

• The stdio module provides input and output support, 

while hiding its implementation details; typically, the 

implementation for scanf()and printf() ships in binary 

form with the compiler.

• The stdio.h header file provides the abstraction, which is 

all that we need to complete our source code.

• We should practice the same modular design and 

abstraction in our own development.  



Modular Programing with Abstraction

• The main module accesses 

the Transaction module.

• The Transaction module accesses 

the iostream module.

• The Transaction module defines the 

transaction functions used by the 

application.

• The iostream module defines 

the cout and cin objects used by the 

application.



Modular Programing with Abstraction

• To translate the source code of any module the compiler 

only needs the names used within the module but defined 

outside the module.

• To enable this in C++, we store the source code for each 

module in two separate files:
 a header file - declares the function or class prototypes

 an implementation file - defines the functions and contains all of 

the logic

• The file extension .h (or .hpp) identifies the header file.

• The file extension .cpp identifies the implementation file.



• The main.h file contains 

definitions specific to 

the main module and the

• Transaction.h file contains 

definitions specific to 

the Transaction module.
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• The implementation file for the main module 

includes the header files for itself (main.h) 

and the Transactionmodule 

(Transaction.h).

• The implementation file for 

the Transaction module includes the header 

files for itself (Transaction.h) and the 

iostream module.

• An implementation file can include several 

header files but DOES NOT include any 

other implementation file.
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• We compile each implementation 

(*.cpp) file separately and only once.

• We do not compile header (*.h) files.

• A compiled version of iostream's 

implementation file is part of the 

system library.
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• Preprocessor

 interprets all directives creating a single translation unit for 

the compiler

 inserts the contents of all #include header files

 substitutes all #define macros
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• Compiler - compiles each translation unit separately and 

creates a corresponding binary version

• Linker - assembles the various binary units along with the 

system binaries to create one complete executable binary
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Modular Programing with Abstraction

• Separate Compiling 
 g++ -Wall –c Transaction.cpp   //Creates Transaction.o

 g++ -Wall –c main.cpp    //Creates main.o

• Linking object files together
 g++ -Wall –o accounting main.o Transaction.o

• Executing
 ./accounting



Header Guards

#ifndef __TRANSACTION_HEADER__

#define __TRANSACTION_HEADER__

// contents of Transaction.h

//...

#endif

• To ensure it is safe to include a file more than once.
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Header Guards

If this variable is 

not defined…

Define it.

End of guarded area.

#ifndef __TRANSACTION_HEADER__

#define __TRANSACTION_HEADER__

// contents of Transaction.h

//...

#endif

• To ensure it is safe to include a file more than once.
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Modular Programing with Abstraction

• Enables individual module development, 

compilation, and testing

• Easy to develop the software

• Easy to test the software

• Easy to maintain the software


