
Modular Programming with

Abstraction

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Modular Programing with Abstraction

• A modular design consists of a set of modules, which

are developed and tested separately.

• C programming language supports modular design

through library modules composed of functions.

• The stdio module provides input and output support,

while hiding its implementation details; typically, the

implementation for scanf()and printf() ships in binary

form with the compiler.

• The stdio.h header file provides the abstraction, which is

all that we need to complete our source code.

• We should practice the same modular design and

abstraction in our own development.

Modular Programing with Abstraction

• The main module accesses

the Transaction module.

• The Transaction module accesses

the iostream module.

• The Transaction module defines the

transaction functions used by the

application.

• The iostream module defines

the cout and cin objects used by the

application.

Modular Programing with Abstraction

• To translate the source code of any module the compiler

only needs the names used within the module but defined

outside the module.

• To enable this in C++, we store the source code for each

module in two separate files:
 a header file - declares the function or class prototypes

 an implementation file - defines the functions and contains all of

the logic

• The file extension .h (or .hpp) identifies the header file.

• The file extension .cpp identifies the implementation file.

• The main.h file contains

definitions specific to

the main module and the

• Transaction.h file contains

definitions specific to

the Transaction module.

Modular Programing with Abstraction

• The implementation file for the main module

includes the header files for itself (main.h)

and the Transactionmodule

(Transaction.h).

• The implementation file for

the Transaction module includes the header

files for itself (Transaction.h) and the

iostream module.

• An implementation file can include several

header files but DOES NOT include any

other implementation file.

Modular Programing with Abstraction

• We compile each implementation

(*.cpp) file separately and only once.

• We do not compile header (*.h) files.

• A compiled version of iostream's

implementation file is part of the

system library.

Modular Programing with Abstraction

• Preprocessor

 interprets all directives creating a single translation unit for

the compiler

 inserts the contents of all #include header files

 substitutes all #define macros

Modular Programing with Abstraction

• Compiler - compiles each translation unit separately and

creates a corresponding binary version

• Linker - assembles the various binary units along with the

system binaries to create one complete executable binary

Modular Programing with Abstraction

Modular Programing with Abstraction

Modular Programing with Abstraction

Modular Programing with Abstraction

• Separate Compiling
 g++ -Wall –c Transaction.cpp //Creates Transaction.o

 g++ -Wall –c main.cpp //Creates main.o

• Linking object files together
 g++ -Wall –o accounting main.o Transaction.o

• Executing
 ./accounting

Header Guards

#ifndef __TRANSACTION_HEADER__

#define __TRANSACTION_HEADER__

// contents of Transaction.h

//...

#endif

• To ensure it is safe to include a file more than once.

Modular Programing with Abstraction

Header Guards

If this variable is

not defined…

Define it.

End of guarded area.

#ifndef __TRANSACTION_HEADER__

#define __TRANSACTION_HEADER__

// contents of Transaction.h

//...

#endif

• To ensure it is safe to include a file more than once.

Modular Programing with Abstraction

Modular Programing with Abstraction

• Enables individual module development,

compilation, and testing

• Easy to develop the software

• Easy to test the software

• Easy to maintain the software

