
Debugging with GDB 

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada



GDB

 GDB is the GNU Project debugger 

 GDB provides some helpful functionality
 Run programs 

 Make the program stops on specified places or on specified  
conditions

 Give information about current variables’ values, the 
memory and the stack

 Let you examine the program execution step by step -
stepping

 Let you examine the change of program variables’ values -
tracing

 GDB is a command-line program



GDB

 To be able to debug your program, you must compile it 
with the -g option (creates the symbol table) !

 g++ -Wall –g –o my_prog my_prog.c

 g++ -Wall –ggdb –o my_prog my_prog.c

 To start gdb with your program type: 

 >gdb my_prog

 You can also start GDB without your program and then 
load it later using gdb file command
 >gdb

 (gdb) file my_prog

 You can quit from GDB using its quit command
 (gdb) quit



GDB

 When gdb starts, your program is not actually 
running.

 You have to use the run command to start 
execution.

 Before you do that, you should place some 
break points.

 Once you hit a break point, you can examine any 
variable.



GDB – Running Programs

Running a program: 

run (or r) 

-- creates an inferior process that runs your program. 

 if there are no execution errors the program will finish and results will 
be displayed

 in case of error, the GDB will show:

- the line the program has stopped on and  

- a short description of what it believes has caused the error

There is a certain information that affects the execution of a program:

 program’s arguments

 program’s environment

 program’s working directory

 the standard input and output



GDB – Program’s arguments

Specifying arguments for your program:

 As arguments to run:  run arg1 arg2 …

 With set args command: set args arg1 arg2 …

! run without arguments uses the same arguments used by the 
previous run.

! set args without arguments – removes all arguments. 

! show args command shows the arguments your program has been 

started with.



GDB – Program’s environment

Changing the PATH environment variable:

path dir 

– add the directory dir at the beginning of the PATH  variable. You may 

specify several directory names separated by ‘:’ or white space.

show paths – displays the search paths for executables.

Changing the working directory:

cd dir

– to change the working directory

Redirecting output:

run > outfile direct the output to the file outfile.



Debugging an already-running process

From inside GDB:

attach process-id 

// You need to know the process ID of the program

// To get the process ID use the UNIX command ps

detach – detaches the currently attached process from the GDB control. A 

detached process continues its own execution.



GDB – Breakpoints and watchpoints

Breakpoints and watchpoints allow you to specify the places or the conditions 

where you want your program to stop.

break arg – stops when the execution reaches the specified line

arg – file: line number, line number, function-name, 

+/- offset 

watch expr – stops whenever the value of the expression changes

clear [arg]

Without arguments deletes any breakpoint at the next instruction to be 
executed in the current stack frame

delete [bnum]

Without arguments deletes all breakpoints.



GDB – Examining variables

! Global variables can be examined from every point in the source file.

! Local variables – can be examined only in their scope or using:

file::variable or function::variable

The variable type: ptype var

Current value: print var

Automatic display: display var 

- adds var to the automatic display list.

undisplay dnum

___________________________________________________

Specifying the output format (x, o, d, u, t, a, f, and c) :

print /t var - prints the value of var in binary format



GDB – Value history

The value history keeps the values printed by the print command.

Previously printed values can be accessed by typing $ followed by  their 

history number. 

$ - refers to the most recent value and 

$$n - refers to the n-th value from the end.

show values [n|+]

Without argument – the last 10 values.

n – 10 values centered around n

+ – 10 values after the last printed



Stepping through the program

step [count] – program execution continue to next source line 
going into function calls.

next [count] – program execution continue to the next source 

line omitting function calls.

continue – resume program execution

until – continue until the next source line in the current stack frame 
is reached. /useful to exit from loops/



GDB – Altering execution

Returning from a function

finish - forced return 

return [ret_value] – pops the current stack frame

Continuing at different address 

jump line_num|*address

Altering the value of a variable

set i=256

Proceeding to a specified point: 

until [line_num|*address |function_name]



GDB – The stack frame

Stack frames are identified by their addresses, which are 
kept in the frame pointer register.

0

1

2

 Selecting a frame:

frame n|addr

up n

down n

 Information about the current frame

frame – brief description

info args – shows function arguments

info locals – shows local variables



GDB – Convenience variables

 Convenience variables are used to store values that you may want to refer 
later. Any string preceded by $ is regarded as a convenience variable.

Ex.: $table = *table_ptr

 There are several automatically created convenience variables:

$pc – program counter

$sp – stack pointer

$fp – frame pointer

$ps – processor status

$_ - contains the last examined address

$__ - the value in the last examined address

$_exitcode - the exit code of the debugged program



GDB – Examining memory

The x command (for “examine”):

 x/nfu addr – specify the number of units (n), the display format (f) 
and the unit size (u) of the memory you want to examine, starting from 
the address addr. Unit size can be – b, h (half), w and g (giant).

 x addr – start printing from the address addr, others default

 x – all default

Registers

Registers names are different for each machine. Use info registers to 
see the names used on your machine.

GDB has four “standard” registers names that are available on most 
machines: program counter, stack pointer, frame pointer and processor 
status.



GDB – Additional process information

info proc – summarize available information about the current 

process.

info proc mappings – address range accessible in the 

program.

info proc times – starting time, user CPU time and system 

CPU time for your program and its children.

help info !

info signals – information about the system signals and how 

GDB handles them.



GDB Quick Reference Guide
run -- run the program 

run args -- run program with command line args. 

break function -- set breakpoint at function entry 

break linenum -- set breakpoint at line 

break *addr -- set breakpoint at address 

break … if cond -- set breakpoint; break if condition 

clear funct -- remove breakpoint at function entry 

delete bnum -- delete breakpoint bnum 

disable bnum -- disable breakpoint bnum 

enable bnum -- enable breakpoint bnum 

condition bnum -- set conditions for breakpoint bnum 

commands bnum -- set commands for breakpoint bnum 

cont -- continue execution to next break point 

next -- step next source level statement or function 

nexti -- step next machine instruction or function 

step -- step next source level statement 

stepi -- step next machine instruction 

print expr -- print value of expression including $n for machine registers 

print/f expr -- print value of expression according to format specified by f: x hexadecimal, d 
decimal, u unsigned decimal, o octal, a address, c character, f single precision 
floating point. 

x/sf addr -- Examine memory of size s bytes in format f: s = b one byte, s = h halfword,  
s = w word, s = g double word; x hexadecimal, d decimal, u unsigned 
decimal, o octal, a address, c character, f single precision floating point, s ascii
string, I machine instruction 



display/f expr -- p/sf, print every gdb command 

display/sf expr -- x/sf, examine every gdb command 

undisplay n -- remove item n from display list. 

jump *addr -- execute next instruction at address addr. 

printf string, expr -- formatted output, similar to printf in C but without the parentheses 
surrounding the arguments. 

info data -- information about break, display, registers, functions, variables 

list -- list ten source lines 

where -- show call stack 

q -- exit gdb

disassemble -- dump the assembly code 

display -- done at each prompt 

commands -- done at specific breakpoint

backtrace [<n>] -- prints a backtrace <n> levels deep

Note: pressing Enter repeats the last command.

GDB Quick Reference Guide



GDB Example

/* REVERSE.C */

#include <stdio.h>

#include <string.h>

/* Function Prototype */

void reverse (char*, char*);

int main ()

{

char str [100]; /* Buffer to hold reversed string */

reverse ("cat", str); /* Reverse the string "cat" */

printf ("reverse (\"cat\") = %s\n", str); /* Display */

reverse ("noon", str); /* Reverse the string "noon" */

printf ("reverse (\"noon\") = %s\n", str); /* Display */

return 0;

}



GDB Example

/* REVERSE.C */

…………………

void reverse (char* before, char* after)

{

int i;

int j;

int len;

len = strlen (before); 

for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

after[i] = before[j];

after[len] = 0; /* NULL terminate reversed string */

}



GDB Example

$ gdb reverse1

GNU gdb (GDB) 8.1

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.  Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-w64-mingw32".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from reverse1...done.



GDB Example

(gdb) list

3       #include <stdio.h>

4       #include <string.h>

5

6

7       /* Function Prototype */

8       void reverse (char*, char*);

9

10      
/****************************************************************/

11

12       int main ()



GDB Example

(gdb) list

13

14       {

15         char str [100]; /* Buffer to hold reversed string */

16

17         reverse ("cat", str); /* Reverse the string "cat" */

18         printf ("reverse (\"cat\") = %s\n", str); /*         Display */

19         reverse ("noon", str); /* Reverse the string "noon" */

20         printf ("reverse (\"noon\") = %s\n", str); /* Display */

21         return 0;

22       }

(gdb)



GDB Example

(gdb) break main

Breakpoint 1 at 0x4015ce: file reverse1.c, line 17.

(gdb) break reverse

Breakpoint 2 at 0x40162b: file reverse1.c, line 36.

(gdb) break 18

Breakpoint 3 at 0x4015e2: file reverse1.c, line 18.

(gdb) info break

Num     Type           Disp Enb Address    What

1       breakpoint     keep y   0x004015ce in main at reverse1.c:17

2       breakpoint     keep y   0x0040162b in reverse at reverse1.c:36

3       breakpoint     keep y   0x004015e2 in main at reverse1.c:18

(gdb) run

Starting program: C:\Users\Tanha\vs_code_projects\gdb_tutorial\reverse1.exe

[New Thread 18128.0x4bb4]

[New Thread 18128.0x4e98]

Thread 1 hit Breakpoint 1, main () at reverse1.c:17

17         reverse ("cat", str); /* Reverse the string "cat" */

(gdb)



GDB Example
Starting program: C:\Users\Tanha\vs_code_projects\gdb_tutorial\reverse1.exe

[New Thread 18128.0x4bb4]

[New Thread 18128.0x4e98]

Thread 1 hit Breakpoint 1, main () at reverse1.c:17

17         reverse ("cat", str); /* Reverse the string "cat" */

(gdb) continue

Continuing.

Thread 1 hit Breakpoint 2, reverse (before=0x404044 "cat", after=0x61fe6c "~Dí-¼,j") at 
reverse1.c:36

36         len = strlen (before);

(gdb) backtrace

#0  reverse (before=0x404044 "cat", after=0x61fe6c "~Dí-¼,j") at reverse1.c:36

#1  0x004015e2 in main () at reverse1.c:17

(gdb) next

38         for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

(gdb)



GDB Example
(gdb) next

39           after[i] = before[j];

(gdb) print after[i]

$1 = 126 '~'

(gdb) print before[j]

$2 = 116 't'

(gdb)

$3 = 116 't'

(gdb) next

38         for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

(gdb) print after

$4 = 0x61fe6c "tDí-¼,j"

(gdb) print before

$5 = 0x404044 "cat"

(gdb) continue

Continuing.

Thread 1 hit Breakpoint 3, main () at reverse1.c:18

18         printf ("reverse (\"cat\") = %s\n", str); /*         Display */

(gdb)



GDB Example

(gdb) next

[New Thread 18128.0x56a8]

reverse ("cat") = tac

19         reverse ("noon", str); /* Reverse the string "noon" */

(gdb) step

Thread 1 hit Breakpoint 2, reverse (before=0x40405e "noon", after=0x61fe6c "tac") at 
reverse1.c:36

36         len = strlen (before);

(gdb) return 0

Make reverse return now? (y or n) y

#0  main () at reverse1.c:20

20         printf ("reverse (\"noon\") = %s\n", str); /* Display */



GDB Example

(gdb) print str

$6 = 
"tac\000¼,j\000:\000\000\000\000\000\000\000\200\026@\000lþa\000`\000\000
@Ìÿa\000pÝ)uÞ\036¢âþÿÿÿ\032\200)uÏ\024@\000\200\026@\000>\037ëv\000\000
\000\000\001\000\000\000:\000\000\000¼,j\000hÿa\000ë\026@\000\200\026@\0
00\000\000\000\000:\000\000\000¼,j"

(gdb) next

reverse ("noon") = tac

21         return 0;

(gdb) quit

A debugging session is active.

Inferior 1 [process 18128] will be killed.

Quit anyway? (y or n) y



GDB Example: Challenge

/* REVERSE2.C */

#include <stdio.h>

#include <string.h>

/* Function Prototype */

int reverse (char*);

int main()

{

char str[1024];

printf("Give me a word to reverse: ");

gets(str);

reverse(str);

printf("REVERSED: %s\n", str);

return 0;

}



GDB Example: Challenge

/* REVERSE2.C */

int reverse (char* str)
{

int i;

int len;

char c;
len = strlen (str); 
for (i = 0; i < len; i++) /* Reverse loop */

{

c = *(str+i);

*(str+i) = *(str+len-i-1);

*(str+len-i-1) = c;

}

return 0;

}


