
Make and Makefile

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

The make utility

 The make utility is a tool for building software projects

 make uses a descriptor file called a Makefile that

contains

 rules to build the targets

 dependency information

 commands

 Makefiles are text files and similar in a way to the
shell scripts, which are interpreted by the make utility.

 Most often, the Makefile tells make how to compile

and link a program

Make Filename

 When you key in make, the make looks for the default

filenames in the current directory. For GNU make these are:

 GNUMakefile

 makefile

 Makefile

 If there are more than one of the above in the current

directory, the first one according to the above is chosen.

 It is possible to name the makefile anyway you want, then

for make to interpret it:

make -f <your-filename>

Makefile Content

o variables (macros)

o rules (targets) : implicit, explicit

o directives (conditionals)

o # – comments everything till the end of the line

o \ - to separate one command line on two rows

 A Makefile may have some variables declared for

convenience then followed by rules on how to build a

given target program.

 Makefile declares variables which are used across all the

rules:

 which compiler options to use,

 where to look for libraries and include files, etc.

 The rules specify what's needed to build a specific part

(target) and how to do it, using shell commands.

Makefile Content

Make Variables

 The syntax for declaring and setting a Makefile
macro or variable is varname = variable contents

 To call the variable, use $(varname)

Defining the object files

OBJ = main.o example.o

Linking object files

sample: $(OBJ)

cc -o sample $(OBJ)

Predefined Make Variables

 CC Compiler, defaults to cc.

 CFLAGS Passed to $(CC)

 LD Loader, defaults to ld

 LDFLAGS Passed to $(LD)

 $@ Full name of the current target.

 $? Files for current dependency which are out-of-date

 $< The source file of the current (single) dependency

Make Variables

The old way (no variables) A new way (using variables)

CC = g++

OBJS = eval.o main.o

HDRS = eval.h

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

eval.o : eval.c $(HDRS)

$(CC) –c –g eval.c

main.o : main.c $(HDRS)

$(CC) –c –g main.c

my_prog : eval.o main.o

g++ -o my_prog eval.o main.o

eval.o : eval.c eval.h

g++ -c –g eval.c

main.o : main.c eval.h

g++ -c –g main.c

Make rules

 rules have the following form:

target ... : dependencies ...

<tab>command

<tab>...

<tab>...

• A target is usually the name of a file that is

generated by a program

• A dependencies is a file that is used as input to

create the target

• A command is an action that make carries out

Make Rule

 Makefiles main element is rule:

target : dependencies

TAB commands #shell commands

my_prog : eval.o main.o

g++ -o my_prog eval.o main.o

eval.o : eval.c eval.h

g++ -c eval.c

main.o : main.c eval.h

g++ -c main.c

Make Targets

 Target name can be almost anything:

 just a name

 a filename

 a variable

 There can be several targets on the same line if

they depend on the same things.

 A target is followed by

 a colon “:”

 and then by a list of dependencies, separated by

spaced

Make Targets

 The default target make is looking for is either

all or the first one in the file.

 Another common target is clean

 Developers supply it to clean up their source tree

from temporary files, object modules, etc.

 Typical invocation is:
make clean

Phony Targets

 Phony targets allow “scripts” to be included in a
makefile.

 .PHONY tells Make which targets are not files. This
avoids conflict with files of the same name, and
improves performance.

 If a phony target is included as a dependency for
another target, it will be run every time that other
target is required. Phony targets are never up-to-date.

Naming our phony targets

.PHONY: clean install

Removing the executable and the object files

clean:

rm sample main.o example.o

echo clean: make complete

Installing the final product

install:

cp sample /usr/local/.

echo install: make complete

Phony Targets

Make Dependencies

 The list of dependencies can be:

 Filenames

 Other target names

 Variables

 Separated by a space.

 May be empty; means “build always”.

Make Dependencies

 Before the target is built:

 it’s checked whether it is up-to-date (in case of files) by

comparing time stamp of the target of each dependency;

if the target file does not exist, it’s automatically

considered “old”.

 If there are dependencies that are “newer” than the target,

then the target is rebuilt; else untouched.

 If the dependency is a name of another rule, make

descends recursively (may be in parallel) to that rule.

Make Actions

 A list of actions represents the needed

operations to be carried out to arrive to the rule’s

target.

 May be empty.

 Every action in a rule is usually a typical shell

command you would normally type to do the

same thing.

 Every command MUST be preceded with a tab!

 This is how make identifies actions as opposed to

variable assignments and targets. Do not indent

actions with spaces!

Implicit rules
 Implicit rules are standard ways for making one type of file

from another type.

 There are numerous rules for making an .o file – from a .c file,
a .p file, etc. make applies the first rule it meets.

 If you have not defined a rule for a given object file, make will
apply an implicit rule for it.

Example:

Our makefile The way make understands it

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

my_prog : eval.o main.o

$(C) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

eval.o : eval.c

$(C) -c eval.c

main.o : main.c

$(C) -c main.c

Pattern Rules

 A pattern rule is user defined implicit rule

 A pattern rule is a concise way of specifying a rule for

many files at once.

 You specify a pattern by using the % wildcard

 The following pattern rule will take any .c file and

compile it into a .o file:

%.o: %.c

$(CC) $(CFLAGS) $(INCLUDES) -c <input> -o <output>

%.o: %.c

$(CC) $(CFLAGS) -c $< -o $@

Defining Pattern Rules

CC = g++

OBJS = eval.o main.o

HDRS = eval.h

%.o : %.c

$(CC) -c –g $<

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

$(OBJS) : $(HDRS)

Avoiding pattern rules - empty commands

target: ; #Implicit rules will not apply for this target.

Make Directives

Possible conditional directives are:

if ifeq ifneq ifdef ifndef

All of them should be closed with endif.

Complex conditionals may use elif and else.

Example:

libs_for_gcc = -lgnu

normal_libs =

ifeq ($(CC),gcc)

libs=$(libs_for_gcc) #no tabs at the beginning

else

libs=$(normal_libs) #no tabs at the beginning

endif

CC = gcc

CFLAGS = -g –Wall

OBJFILES= lib.o prog.o

OUTPUT = binary

$(OUTPUT): $(OBJFILES)

$(CC) $(CFLAGS) $(OBJFILES) -o $(OUTPUT)

lib.o: lib.c

$(CC) $(CFLAGS) -c lib.c -o lib.o

prog.o: prog.c

$(CC) $(CFLAGS) -c prog.c -o prog.o

.PHONY: clean

clean:

rm $(OBJFILES) $(OUTPUT)

Makefile Example 1

CC = gcc

CFLAGS = -g -Wall

OUTPUT = binary

OBJFILES = lib.o prog.o

$(OUTPUT): $(OBJFILES)

$(CC) $(CFLAGS) $(OBJFILES) -o $(OUTPUT)

%.o: %.c

$<: dependency (%.c)

$@: target (%.o)

$(CC) $(CFLAGS) -c $< -o $@

.PHONY: clean

clean:

rm $OBJFILES) $(OUTPUT)

Makefile Example 2

Using makefiles

Running make

>make – if you want to build the first target

of “makefile”

>make –f filename – if the name of your file is not

“makefile” or “Makefile”

>make target_name – if you want to make a target that is

not the first one

> make #builds first target, i.e., binary

> make binary #builds specified target, i.e., binary

> make lib.o #builds specified target, i.e., lib.o

> make prog.o #builds specified target, i.e., prog.o

> make clean #builds specified target, i.e., clean

Interesting Make Arguments

 -d print debug information

 -f <file> use <file> instead of {mM}akefile

 -n list what would be made; do not execute

 -t ‘touch’ files to make them up-to-date; do not

execute

 -e env variables override makefile variables

