
Make and Makefile

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

The make utility

 The make utility is a tool for building software projects

 make uses a descriptor file called a Makefile that

contains

 rules to build the targets

 dependency information

 commands

 Makefiles are text files and similar in a way to the
shell scripts, which are interpreted by the make utility.

 Most often, the Makefile tells make how to compile

and link a program

Make Filename

 When you key in make, the make looks for the default

filenames in the current directory. For GNU make these are:

 GNUMakefile

 makefile

 Makefile

 If there are more than one of the above in the current

directory, the first one according to the above is chosen.

 It is possible to name the makefile anyway you want, then

for make to interpret it:

make -f <your-filename>

Makefile Content

o variables (macros)

o rules (targets) : implicit, explicit

o directives (conditionals)

o # – comments everything till the end of the line

o \ - to separate one command line on two rows

 A Makefile may have some variables declared for

convenience then followed by rules on how to build a

given target program.

 Makefile declares variables which are used across all the

rules:

 which compiler options to use,

 where to look for libraries and include files, etc.

 The rules specify what's needed to build a specific part

(target) and how to do it, using shell commands.

Makefile Content

Make Variables

 The syntax for declaring and setting a Makefile
macro or variable is varname = variable contents

 To call the variable, use $(varname)

Defining the object files

OBJ = main.o example.o

Linking object files

sample: $(OBJ)

cc -o sample $(OBJ)

Predefined Make Variables

 CC Compiler, defaults to cc.

 CFLAGS Passed to $(CC)

 LD Loader, defaults to ld

 LDFLAGS Passed to $(LD)

 $@ Full name of the current target.

 $? Files for current dependency which are out-of-date

 $< The source file of the current (single) dependency

Make Variables

The old way (no variables) A new way (using variables)

CC = g++

OBJS = eval.o main.o

HDRS = eval.h

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

eval.o : eval.c $(HDRS)

$(CC) –c –g eval.c

main.o : main.c $(HDRS)

$(CC) –c –g main.c

my_prog : eval.o main.o

g++ -o my_prog eval.o main.o

eval.o : eval.c eval.h

g++ -c –g eval.c

main.o : main.c eval.h

g++ -c –g main.c

Make rules

 rules have the following form:

target ... : dependencies ...

<tab>command

<tab>...

<tab>...

• A target is usually the name of a file that is

generated by a program

• A dependencies is a file that is used as input to

create the target

• A command is an action that make carries out

Make Rule

 Makefiles main element is rule:

target : dependencies

TAB commands #shell commands

my_prog : eval.o main.o

g++ -o my_prog eval.o main.o

eval.o : eval.c eval.h

g++ -c eval.c

main.o : main.c eval.h

g++ -c main.c

Make Targets

 Target name can be almost anything:

 just a name

 a filename

 a variable

 There can be several targets on the same line if

they depend on the same things.

 A target is followed by

 a colon “:”

 and then by a list of dependencies, separated by

spaced

Make Targets

 The default target make is looking for is either

all or the first one in the file.

 Another common target is clean

 Developers supply it to clean up their source tree

from temporary files, object modules, etc.

 Typical invocation is:
make clean

Phony Targets

 Phony targets allow “scripts” to be included in a
makefile.

 .PHONY tells Make which targets are not files. This
avoids conflict with files of the same name, and
improves performance.

 If a phony target is included as a dependency for
another target, it will be run every time that other
target is required. Phony targets are never up-to-date.

Naming our phony targets

.PHONY: clean install

Removing the executable and the object files

clean:

rm sample main.o example.o

echo clean: make complete

Installing the final product

install:

cp sample /usr/local/.

echo install: make complete

Phony Targets

Make Dependencies

 The list of dependencies can be:

 Filenames

 Other target names

 Variables

 Separated by a space.

 May be empty; means “build always”.

Make Dependencies

 Before the target is built:

 it’s checked whether it is up-to-date (in case of files) by

comparing time stamp of the target of each dependency;

if the target file does not exist, it’s automatically

considered “old”.

 If there are dependencies that are “newer” than the target,

then the target is rebuilt; else untouched.

 If the dependency is a name of another rule, make

descends recursively (may be in parallel) to that rule.

Make Actions

 A list of actions represents the needed

operations to be carried out to arrive to the rule’s

target.

 May be empty.

 Every action in a rule is usually a typical shell

command you would normally type to do the

same thing.

 Every command MUST be preceded with a tab!

 This is how make identifies actions as opposed to

variable assignments and targets. Do not indent

actions with spaces!

Implicit rules
 Implicit rules are standard ways for making one type of file

from another type.

 There are numerous rules for making an .o file – from a .c file,
a .p file, etc. make applies the first rule it meets.

 If you have not defined a rule for a given object file, make will
apply an implicit rule for it.

Example:

Our makefile The way make understands it

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

my_prog : eval.o main.o

$(C) -o my_prog $(OBJS)

$(OBJS) : $(HEADERS)

eval.o : eval.c

$(C) -c eval.c

main.o : main.c

$(C) -c main.c

Pattern Rules

 A pattern rule is user defined implicit rule

 A pattern rule is a concise way of specifying a rule for

many files at once.

 You specify a pattern by using the % wildcard

 The following pattern rule will take any .c file and

compile it into a .o file:

%.o: %.c

$(CC) $(CFLAGS) $(INCLUDES) -c <input> -o <output>

%.o: %.c

$(CC) $(CFLAGS) -c $< -o $@

Defining Pattern Rules

CC = g++

OBJS = eval.o main.o

HDRS = eval.h

%.o : %.c

$(CC) -c –g $<

my_prog : eval.o main.o

$(CC) -o my_prog $(OBJS)

$(OBJS) : $(HDRS)

Avoiding pattern rules - empty commands

target: ; #Implicit rules will not apply for this target.

Make Directives

Possible conditional directives are:

if ifeq ifneq ifdef ifndef

All of them should be closed with endif.

Complex conditionals may use elif and else.

Example:

libs_for_gcc = -lgnu

normal_libs =

ifeq ($(CC),gcc)

libs=$(libs_for_gcc) #no tabs at the beginning

else

libs=$(normal_libs) #no tabs at the beginning

endif

CC = gcc

CFLAGS = -g –Wall

OBJFILES= lib.o prog.o

OUTPUT = binary

$(OUTPUT): $(OBJFILES)

$(CC) $(CFLAGS) $(OBJFILES) -o $(OUTPUT)

lib.o: lib.c

$(CC) $(CFLAGS) -c lib.c -o lib.o

prog.o: prog.c

$(CC) $(CFLAGS) -c prog.c -o prog.o

.PHONY: clean

clean:

rm $(OBJFILES) $(OUTPUT)

Makefile Example 1

CC = gcc

CFLAGS = -g -Wall

OUTPUT = binary

OBJFILES = lib.o prog.o

$(OUTPUT): $(OBJFILES)

$(CC) $(CFLAGS) $(OBJFILES) -o $(OUTPUT)

%.o: %.c

$<: dependency (%.c)

$@: target (%.o)

$(CC) $(CFLAGS) -c $< -o $@

.PHONY: clean

clean:

rm $OBJFILES) $(OUTPUT)

Makefile Example 2

Using makefiles

Running make

>make – if you want to build the first target

of “makefile”

>make –f filename – if the name of your file is not

“makefile” or “Makefile”

>make target_name – if you want to make a target that is

not the first one

> make #builds first target, i.e., binary

> make binary #builds specified target, i.e., binary

> make lib.o #builds specified target, i.e., lib.o

> make prog.o #builds specified target, i.e., prog.o

> make clean #builds specified target, i.e., clean

Interesting Make Arguments

 -d print debug information

 -f <file> use <file> instead of {mM}akefile

 -n list what would be made; do not execute

 -t ‘touch’ files to make them up-to-date; do not

execute

 -e env variables override makefile variables

