
GNU Compiler Collection (gcc)

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada



gcc
• gcc

– stands for GNU Compiler Collection

– a popular console-based compiler for UNIX platforms and others; can 

cross-compile code for various architectures

– gcc to compile C programs; g++ for C++

– can actually work with also ADA, Java, and a couple other languages 

– gcc performs all of these:

• preprocessing,

• compilation, 

• assembly, and 

• linking

– we are to use it for our C++ labs and assignment

• As always: there is man gcc



gcc Options

• There are zillions of them, but there are some the most 

often used ones:

– To compile: -c

– Specify output filename: -o <filename>

– Include debugging symbols: -g

– GDB friendly output: -ggdb

– Show all (most) warnings: -Wall

– Be stubborn about standards: -ansi and -pedantic

– Optimizations: -O, -O*



gcc Options: -c

• gcc performs, preprocessing, compilation and assembly of 

the source file without linking.

• The output are usually object code files, .o; they can later 

be linked and form the desired executables.

• Generates one object file per source file keeping the same 

prefix (before .) of the filename.



gcc Options: -o <filename>

• Places resulting file into the filename specified instead of 

the default one.

• Can be used with any generated files (object, executables, 

assembly, etc.)

• If you have the file called source.c; the defaults are:

– source.o if -c was specified

– a.out if executable

• These can be overridden with the -o option.



gcc Options: -g

• Includes debugging info in the generated object code. This 

info can later be used in gdb.

• gcc allows to use -g with the optimization turned on (-O) 

in case there is a need to debug or trace the optimized 

code.



gcc Options: -ggdb

• In addition to -g produces the most GDB-friendly output if 

enabled.



gcc Options: -Wall

• Shows most of the warnings related to possibly incorrect code.

• -Wall is a combination of a large common set of the -W options 

together. These typically include:

– unused variables

– possibly uninitialized variables when in use for the first time

– defaulting return types

– missing braces and parentheses in certain context that make it ambiguous

– etc.

• Always a recommended option to save you from some “hidden” 

bugs.

• Try always using it and avoid having those warnings.



gcc Options: -O

• Various levels of optimization of the code

• -O1 to -O3 are various degrees of optimization targeted for 

speed

• If -O is added, then the code size is considered

• -O0 means “no optimization”

• -Os targets generated code size (forces not to use 

optimizations resulting in bigger code).



gcc Options: -I

• Tells gcc where to look for include files (.h/.hpp).

• Can be any number of these.

• Usually needed when including headers from various-

depth directories in non-standard places without necessity 

specifying these directories with the .c files themselves, 

e.g.:

#include “myheader.h” vs. 

#include “../foo/bar/myheader.h”



gcc Options: -L and -l

• -L tells gcc where (directory) to look for nonstandard 

library object files. 

• gcc knows the path of standard library objects.

• -l<library> tells gcc to link with specific library. For 

example, if your code uses math library, you need to uses

– gcc example.c –lm –o example



gcc Example

• For example, if you have the following source files in some project of yours:

– ccountln.h

– ccountln.c

– fileops.h

– fileops.c

– process.h

– process.c

– parser.h

– parser.c

• You could compile every C file and then link the objet files generated, or use a 

single command for the entire thing.

– This becomes unfriendly when the number of files increases; hence, use 

Makefiles!

• NOTE: you don’t NEED to compile .h files explicitly.



gcc Example

• One by one:

– gcc -g -Wall -c ccountln.c

– gcc -g -Wall -c parser.c

– gcc -g -Wall -c fileops.c

– gcc -g -Wall -c process.c

• This will give you four object files that you need to link 

and produce an executable:

– gcc ccountln.o parser.o fileops.o process.o -o ccountln



gcc Example

• You can do this as well:

– gcc -g -Wall -ansi -pedantic ccountln.c parser.c fileops.c process.c -o ccountln

• Instead of typing this all on a command line, again: use a 

Makefile.


