
1

Object Polymorphism

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Polymorphism: Compiletime

• Function Overloading: The same function name within a class,
but with a different signature (different parameters), compile-
time polymorphism.

• The same function call with different parameters results in:

– execution of behavior that is specific to the parameter list.

– possibly different behavior than that of with the other
parameter lists.

Polymorphism is the mechanism of decoupling the
actual behavior of the functions from their names.

Polymorphism: Runtime

• In runtime polymorphism, the actual object referred by a
reference or a pointer is resolved at runtime and then the
function calls are resolved to the version of the functions
associated with that actual object. It is also known as dynamic
or late binding polymorphism.

• Runtime polymorphism is achieved through virtual functions,
function overriding, and reference or pointer.

Polymorphism: Runtime

• Base class virtual function (same name and parameter list) is
implemented with different behaviors in the derived classes.
This feature of derived classes that replaces the behavior of a
base class with new or modified behavior is called function
overriding.

• The same function call on different types of objects results in
execution of behavior that is specific to that particular object.

5

Polymorphism: Runtime

• A derived class (D) has all the members of its base class (B)

– Class D is a subtype of Class B.

– Class D can be used anytime class B is expected.

– Class D object can be used as a class B variable.

– Class D object can also be used as a class B reference or

pointer.

• If class D overrides some of class B functions and class D

object is used with a class B reference or pointer.

– Class D version of the overrode function will be executed

even though they are called through class B reference or

pointer.

Polymorphism: Runtime

class Polygon {

protected:

int width;

int height;

public:

Polygon(int width, int height): width(width), height(height) {}

virtual int area (){ return 0; }

};

Polymorphism: Runtime

class Rectangle: public Polygon {

public:

Rectangle(int width, int height): Polygon(width, height) {}

int area () override { return width * height; }

};

class Triangle: public Polygon {

public:

Triangle(int width, int height): Polygon(width, height) {}

int area () override { return width * height / 2; }

};

Polymorphism: Runtime

int main () {

Rectangle rect(7,8);

Triangle trgl(7,8);

Polygon poly(7,8);

Polygon* ppoly = ▭

cout << ppoly->area() << endl; //56 = 7x8

ppoly = &trgl;

cout << ppoly->area() << endl; //28 = 7x8/2

ppoly = &poly;

cout << ppoly->area() << endl; //0

return 0;

}

Polymorphism: Abstract Class

class Polygon {

protected:

int width;

int height;

public:

Polygon(int width, int height): width(width), height(height) {}

virtual int area () = 0; //Pure virtual function

};

As area() function is pure virtual, all derived classes from

Polygon base class should override this function. Otherwise,

the derived class will become another abstract class.

Polymorphism: Abstract Class

class Rectangle: public Polygon {

public:

Rectangle(int width, int height): Polygon(width, height) {}

int area () override { return width * height; }

};

class Triangle: public Polygon {

public:

Triangle(int width, int height): Polygon(width, height) {}

int area () override { return width * height / 2; }

};

Polymorphism: Abstract Class

int main () {

Rectangle rect(7,8);

Triangle trgl(7,8);

//Object Instantiation is not allowed with an abstract class.

// Polygon poly(7,8);

Polygon* ppoly = ▭

cout << ppoly->area() << endl; //56 = 7x8

ppoly = &trgl;

cout << ppoly->area() << endl; //28 = 7x8/2

//ppoly = &poly;

//cout << ppoly->area() << endl; //0

return 0;

}

12

Polymorphism: Runtime

• Benefits

– Decouples the names from the behaviors both at object and

at function levels.

– Adds more flexibilities to incorporate variations into a

software API.

– Makes a software API more maintainable.

– Makes a software API more testable.

• Costs

– Virtualization involves indirection during function calls and

indirection makes the execution slow.

