
1

Object Inheritance

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

An Inheritance Hierarchy

deposit()

acctNum()

acctBalance()

withdraw()

deposit()

acctNum()

acctBalance()

withdraw()

deposit()

acctNum()

acctBalance()

withdraw()

interestRate()

Account

CheckingAccountSavingsAccount

acctOwner()

acctOwner() acctOwner()

Inheritance

 Classes may be arranged in a class hierarchy

where one class (base class) is a generalisation of one

or more other classes (derived classes).

 A derived class inherits the attributes and

behaviours from its base class and may add

new operations or attributes of its own.

 Generalisation is implemented as inheritance in OOP

languages.

An Inheritance Hierarchy

deposit()

acctNum()

acctBalance()

withdraw()

withdraw()

interestRate()

Account

CheckingAccountSavingsAccount

acctOwner() Base

Derived 2Derived 1

Advantages of Inheritance

• It is a reuse mechanism at both the design and the

programming level

• It is an abstraction mechanism which may be used to

classify entities

Base class and Derived class

• The advantage of making a new class a derived class is
that it will inherit attributes and operations of its base
class.

• Derived classes extend existing classes in three ways:

– By defining new (additional) attributes and

operations.

– By overriding (changing the behavior) existing

operations.

– By hiding existing attributes and operations.

Derived classes
• Derived classes are used to define special cases, extensions, or

other variations from the originally defined class.

Example: SavingsAccount and CheckingAccount can be derived from the Account class

class Account {

private:

string number;

string owner;

double balance;

public:

string acctNum() {…}

string acctOwner() {…}

double balance() {…}

void deposit(double) {…}

void withdraw(double) {…}

};

class SavingsAccount : public Account {

private:

double intRate;

public:

void interestRate(double) {…}

};

class CheckingAccount: public Account {

public:

void withdraw(double) {…}

};

Derived classes

deposit()

acctNum()

balance()

withdraw()

deposit()

acctNum()

balance()

withdraw()

deposit()

acctNum()

balance()

withdraw()

interestRate() withdraw()

Account CheckingAccountSavingsAccount

 No new code has to be written for acctNum(), acctOwner(), balance(),

and deposit() operations, they are inherited from the base class into the

derived classes.

 SavingsAccount inherited withdraw() operation and added a new rate()

operation.

 CheckingAccount has different rules to follow for withdraw, i.e,

overrode withdraw() operation.

acctOwner() acctOwner() acctOwner()

Inheritance: Rules

• Derived class inherits but cannot access private

member variables

• Derived class does not inherit private member

functions.

• Derived class inherits every non-private member

variables and non-private member functions except:

– Constructors (default, regular, copy, and move)

– Destructor

– Assignment operators (copy assignment and move

assignment)

• Derived class does not inherit friend functions

