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Inheritance

 Classes may be arranged in a class hierarchy 

where one class (base class) is a generalisation of one 

or more other classes (derived classes).

 A derived class inherits the attributes and 

behaviours from its base class and may add 

new operations or attributes of its own.

 Generalisation is implemented as inheritance in OOP 

languages.
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Advantages of Inheritance

• It is a reuse mechanism at both the design and the 

programming level

• It is an abstraction mechanism which may be used to 

classify entities



Base class and Derived class

• The advantage of making a new class a derived class is
that it will inherit attributes and operations of its base
class.

• Derived classes extend existing classes in three ways:

– By defining new (additional) attributes and 

operations.

– By overriding (changing the behavior) existing 

operations.

– By hiding existing attributes and operations.



Derived classes
• Derived classes are used to define special cases, extensions, or

other variations from the originally defined class.

Example: SavingsAccount and CheckingAccount can be derived from the Account class

class Account {

private:

string number;

string owner;

double balance;

public: 

string acctNum() {…} 

string acctOwner() {…}

double balance() {…}

void deposit(double) {…}

void withdraw(double) {…}

};

class SavingsAccount : public Account {

private:

double intRate;

public:

void interestRate(double) {…} 

};

class CheckingAccount: public Account {

public:

void withdraw(double) {…} 

};



Derived classes
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 No new code has to be written for acctNum(), acctOwner(), balance(), 

and deposit() operations, they are inherited from the base class into the 

derived classes.

 SavingsAccount inherited withdraw() operation and added a new rate()

operation.

 CheckingAccount has different rules to follow for withdraw, i.e, 

overrode withdraw() operation.
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Inheritance: Rules

• Derived class inherits but cannot access private 

member variables 

• Derived class does not inherit private member 

functions.

• Derived class inherits every non-private member 

variables and non-private member functions except:

– Constructors (default, regular, copy, and move)

– Destructor

– Assignment operators (copy assignment and move 

assignment)

• Derived class does not inherit friend functions


