
Binary Search Tree

(Data Structure)

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Binary Search Trees

• Binary search tree

– Every element has a unique key, at most two

children (left and right), and a parent.

– The key in the left child is smaller than the key

in the parent.

– The key in a right child is larger than the key

in the parent.

– The left and right subtrees are also binary

search trees.

Binary Search Tree

Which one is NOT a BST?

Binary Search Tree

Two binary search trees representing the same key set

Binary Search Tree

• A binary tree is represented as a non-linear

linked list where each node may point to

two other nodes.

struct Node {

int key;

Node* left;

Node* right;

};

Binary Search Tree

• It is anchored at the top by a tree pointer, which is
like the head pointer in a linked list.

• The first node in the list, which has no parent, is
called the root node.

• The root node has pointers to two other nodes,
which are called children, or child nodes.

Binary Search Tree

• A node that has no children is called a leaf node.

• All pointers that do not point to a node are set to
NULL.

Binary Search Tree

• Binary trees can be divided into subtrees. A
subtree is an entire branch of the tree, from one
particular node down.

Binary Search Tree

• Viewed as data structures that can support

dynamic set of operations.

– Search, Minimum, Maximum, Predecessor,

Successor, Insert, and Delete.

• Can be used to build

– Dictionaries.

– Priority Queues.

• Basic operations take time proportional to the

height of the tree – O(h).

Binary Search Tree

• Binary search trees are excellent data structures

for searching large amounts of information. They

are commonly used in database applications to

organize key values that index database records.

Traversing Binary Tree

• There are three common methods for traversing a
binary tree and processing the value of each node:

– inorder

– preorder

– postorder

• Each of these methods is best implemented as a
recursive function.

Inorder Traversal

1. The node’s left subtree is traversed.

2. The node’s data is processed.

3. The node’s right subtree is traversed.

2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

Preorder Traversal

1. The node’s data is processed.

2. The node’s left subtree is traversed.

3. The node’s right subtree is traversed.

15, 6, 3, 2, 4, 7, 13, 9, 18, 17, 20

Postorder Traversal

1. The node’s left subtree is traversed.

2. The node’s right subtree is traversed.

3. The node’s data is processed.

2, 4, 3, 9, 13, 7, 6, 17, 20, 18, 15

Searching Binary Search Tree

Recursive Search

Node* search(int key, Node * tree)

{

if (tree == NULL || tree->key == key)

return tree;

else if (key < tree->key)

return search(key, tree->left);

else if (key > tree->key)

return search(key, t->right);

}

2092

155

10

307 17

Iterative Search

Node* search(int key, Node * tree)

{

while (tree != NULL && tree->key != key)

{

if (key < tree->key)

tree = tree->left;

else

tree = tree->right;

}

return tree;

}

2092

155

10

307 17

Find Minimum

Node* findMin(Node * tree)

{

if (tree == NULL || tree->left == NULL)

return tree;

else return findMin(tree->left);

}

2092

155

10

307 17

Find Maximum

Node* findMax(Node * tree)

{

if (tree == NULL || tree->right == NULL)

return tree;

else return findMax(tree->right);

}

2092

155

10

307 17

Successor Node

Next larger node in this node’s subtree

2092

155

10

307 17

How many children can the successor of a node have?

What is the limitation of this algorithm?

Node * succ(Node * tree) {

if (tree->right == NULL)

return NULL;

else

return findMin(tree->right);

}

Predecessor Node

2092

155

10

307 17

Next smaller node in this node’s subtree

Node * pred(Node * tree) {

if (tree->left == NULL)

return NULL;

else

return findMax(tree->left);

}

How many children can the predecessor of a node have?

What is the limitation of this algorithm?

Insert a Node

void insert(int key, Node *& tree)

{

if (tree == NULL) {

tree = new Node(key);

} else if (key < tree->key) {

insert(key, tree->left);

} else if (key > tree->key) {

insert(key, tree->right);

}

}

 Proceed down tree as in search
 If new key not found, then insert a new node at last

spot traversed

Inserting 13

Deleting a Node

• There are three possible situations when we

are deleting a node:

– Leaf node has no child

– Non-leaf node has only one child

– Non-leaf node has two children.

Deletion - Leaf Node

2092

155

10

307 17

2092

155

10

307

Before
After

Deletion – Non-leaf One Child

2092

155

10

307

20

92

5

10

30

7

Before After

Deletion Strategy: Bypass the node being deleted

Deletion – Non-leaf Two Children

3092

205

10

7

Deletion Strategy: Replace the node with the smallest node in

the right subtree, i.e., the successor, whose value is

guaranteed to be between left and right subtrees.

3092

207

10

7

Deletion – Non-leaf Two Children

Could we have used predecessor instead?

3092

207

10

7

3092

207

10

Deletion Code
void delete(int key, Node *& tree) {

if(tree == NULL) return;

if(key < tree->key)

delete(key, tree->left);

else if(key > tree->key)

delete(key, tree->right);

else if (tree->left != NULL && tree->right != NULL) {

tree->key = findMin(tree->right)->key;

delete(tree->key, tree->right);

}

else {

Node* nodeToDelete = tree;

tree = (tree->left != NULL) ? tree->left : tree->right;

delete nodeToDelete;

}

}

