
Linked List

(Data Structure)

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Objectives

• Describe linked structures

• Compare linked structures to array-

based structures

• Explore the techniques for managing a

linked list

• Discuss the need for a separate node

class to form linked structures

Array Limitations

• What are the limitations of an array, as

a data structure?

• Fixed size

• Physically stored in consecutive memory

locations

• To insert or delete items, may need to shift

data

Linked Data Structures

• A linked data structure consists of

items that are linked to other items

• How? each item points to another item

• Singly linked list: each item points to

the next item

• Doubly linked list: each item points to

the next item and to the previous item

Conceptual Diagram of a Singly-

Linked List

head

Advantages of Linked Lists

• The items do not have to be stored in
consecutive memory locations: the
successor can be anywhere physically

• So, can insert and delete items without
shifting data

• Can increase the size of the data structure
easily

• Linked lists can grow dynamically (i.e.
at run time) – the amount of memory
space allocated can grow and shrink as
needed

Nodes

• A linked list is an ordered sequence of items
called nodes
• A node is the basic unit of representation in a

linked list

• A node in a singly linked list consists of two
fields:
• A data portion

• A link (pointer) to the next node in the structure

• The first item (node) in the linked list is
accessed via a head or front pointer
• The linked list is defined by its head (this is its

starting point)

Singly Linked Llist Node

struct Node {

int data;

Node *next;

};

Singly Linked List

head head pointer "defines" the linked list

(note that it is not a node)

Node* head = NULL; //global pointer

Singly Linked List

datadata .

head

these are actual nodes

head pointer "defines" the linked list

(note that it is not a node)

next data next

Linked List

Note: we will hereafter refer to a singly linked list just as
a “linked list”

• Traversing the linked list

• How is the first item accessed?

• The second?

• The last?

• What does the last item point to?

• We call this the null link

Discussion

• How do we get to an item’s successor?

• How do we get to an item’s

predecessor?

• How do we access, say, the 3rd item in

the linked list?

• How does this differ from an array?

Searching in a Linked List

Node* searchLinkedList(int key) {

Node* iterator = head; //assuming head is a global pointer

while(iterator != NULL) {

if (iterator->data == key) {

return iterator;

}

iterator = iterator->next;

}

return NULL;

}

Linked List Operations

We will now examine linked list operations:

• Add an item to the linked list

• We have 3 situations to consider:

• insert a node at the head

• insert a node in the middle

• insert a node at the end

• Delete an item from the linked list

• We have 3 situations to consider:

• delete the node at the head

• delete an interior node

• delete the last node

Inserting a Node at the Front

head

node
node points to the new node to be

inserted, head points to the first node

of the linked list

head

node
1. Make the new node point to the

first node (i.e. the node that head

points to)

head

node
2. Make head point to the new node

(i.e the node that node points to)

Inserting a Node at the Front

Inserting a Node at the Front

void insertNodeAtFront(int data) {

Node* newNode = new Node;

newNode->data = data;

newNode->next = NULL;

//assuming head is a global pointer

newNode->next = head;

head = newNode;

}

Inserting a Node in the Middle

head

node
Let's insert the new node after the third

node in the linked list

insertion point

Inserting a Node in the Middle

head

node
1. Locate the node preceding the

insertion point , since it will have to be

modified (make prev point to it)

prev

head

node
2. Make the new node point to the node

after the insertion point (i.e. the node

pointed to by the node that prev points

to)

prev

Inserting a Node in the Middle

head

node
3. Make the node pointed to by prev

point to the new node

prev

X

Inserting a Node in the Middle

Inserting a Node in the Middle

void insertNodeAtMiddle(Node *node, int after) {

if(node == NULL) return; //sanity check

Node* prev = head; //assuming head is a global pointer

while(prev != NULL) {

if(prev->data == after) {

node->next = prev->next;

prev->next = node;

break;

}

prev = prev->next;

}

}

Inserting a Node in the Middle

void insertNodeAtMiddle(Node *node, int before) {

if(node == NULL) return; //sanity check

Node* prev = head; //assuming head is a global pointer

while(prev != NULL && prev->next != NULL) {

if(prev->next->data == before) {

node->next = prev->next;

prev->next = node;

break;

}

prev = prev->next;

}

}

Discussion

• Inserting a node at the head is a special

case; why?

• Is inserting a node at the end a special

case?

Deleting the First Node

head

head points to the first node in the linked list,

which points to the second node

head

Make head point to the second node (i.e. the node

pointed to by the first node)

X

Deleting the First Node

void deleteFirstNode() {

if(head == NULL) { //assuming head is a global pointer

return;

}

Node* node = head;

head = node->next;

delete node;

}

Deleting an Interior Node
head

1. Traverse the linked list so that previous points to the node

prior to the one to be deleted

previous node

head

2. We need to get the node next to the one to be deleted

previous node

head

3. Make the node that previous points to, point to the node

next to the one that to be deleted

previous node

X

Deleting an Interior Node

Deleting an Interior Node

void deleteNode(Node* node) {

if(node == NULL) return;

if (head == node) { //assuming head is a global pointer

deleteFirstNode();

return;

}

Node* prev = head;

while(prev != NULL && prev->next != NULL) {

if(prev->next == node) {

prev->next = node->next;

delete node;

break;

}

prev = prev->next;

}

}

Discussion

• Deleting the node at the front is a

special case; why?

• Is deleting the last node a special case?

Doubly Linked Llist Node

struct Node {

int data;

Node* prev;

Node* next;

};

Conceptual Diagram of a Doubly-

Linked List

head tail

Conceptual Diagram of a

Circular-Linked List

head

