
C Structures

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

2

Structures

 A Structure is a collection of related data items,

possibly of different types.

 A structure type in C++ is called struct.

 A struct is heterogeneous in that it can be

composed of data of different types.

 In contrast, array is homogeneous since it can

contain only data of the same type.

3

Structures

 Structures hold data that belong together.

 Examples:

 Student record: student id, name, major,
gender, start year, …

 Bank account: account number, name,
currency, balance, …

 Address book: name, address, telephone
number, …

 In database applications, structures are called
records.

4

Structures

 Individual components of a struct type are

called members (or fields).

 Members can be of different types (simple,

array or struct).

 A struct is named as a whole while individual

members are named using field identifiers.

 Complex data structures can be formed by

defining arrays of structs.

5

struct basics

 Definition of a structure:
struct <struct-type>{

<type> <identifier_list>;

<type> <identifier_list>;

...

} ;

 Example:
struct Date {

int day;

int month;

int year;

} ;

The “Date” structure

has 3 members,

day, month & year.

Each identifier

defines a member

of the structure.

6

struct examples

 Example:
struct StudentInfo{

int Id;

int age;

char Gender;

double CGA;

};

 Example:
struct StudentGrade{

char Name[15];

char Course[9];

int Lab[5];

int Homework[3];

int Exam[2];

};

The “StudentGrade”

structure has 5

members of

different array types.

The “StudentInfo”

structure has 4 members

of different types.

7

struct examples
 Example:

struct BankAccount{

char Name[15];

int AcountNo[10];

double balance;

Date Birthday;

};

 Example:
struct StudentRecord{

char Name[15];

int Id;

char Dept[5];

char Gender;

};

The “StudentRecord”

structure has 4

members.

The “BankAcount”

structure has simple,

array and structure

types as members.

8

struct basics

 Declaration of a variable of struct type:

<struct-type> <identifier_list>;

 Example:

struct StudentRecord Student1, Student2;

Student1 and Student2 are variables of
StudentRecord type.

Student1 Student2

Name

Id Gender

Dept

Name

Id Gender

Dept

9

Chan Tai Man

12345 M

COMP

Ex. 1: struct basics

 The members of a struct type variable are
accessed with the dot (.) operator:

<struct-variable>.<member_name>;

 Example:

strcpy(Student1.Name, "Chan Tai Man");

Student1.Id = 12345;

strcpy(Student1.Dept, "COMP");

Student1.gender = 'M';

cout << "The student is ";

switch (Student1.gender){

case 'F': cout << "Ms. "; break;

case 'M': cout << "Mr. "; break;

}

cout << Student1.Name << endl;

Student1

Name

Id Gender

Dept

10

11

Chan Tai Man

12345 M

COMP

Ex. 2: struct-to-struct assignment

 The values contained in one struct type
variable can be assigned to another variable
of the same struct type.

 Example:
strcpy(Student1.Name,

"Chan Tai Man");

Student1.Id = 12345;

strcpy(Student1.Dept, "COMP");

Student1.gender = 'M';

Student2 = Student1;

Student1

Chan Tai Man

12345 M

COMPStudent2

12

13

Ex. 3-5: Nested structures

 We can nest structures inside structures.

 Examples:
struct point{

double x, y;

};

point P;

struct line{

point p1, p2;

};

line L;

struct triangle{

point p1, p2, p3;

};

triangle T;

(P.x, P.y)

(L.p1.x, L.p1.y)

(L.p2.x, L.p2.y)

(T.p2.x, T.p2.y)

(T.p1.x, T.p1.y)

(T.p3.x, T.p3.y)

14

Ex. 3-5: Nested structures

 We can nest structures inside structures.

 struct line{

point p1, p2;

};

line L;

(L.p1.x, L.p1.y)

(L.p2.x, L.p2.y)

line

p1 p2

x y x y

15

Ex. 3-5: Nested structures

 Assign values to the variables P, L, and T
using the picture:

point P;

line L;

triangle T;

(4, 11)

(2, 7)

(10, 9)

(6, 5)

(2, 0)

(8, 3)

 Ex. 3: Graph a point

 Ex. 4: Graph a line

 Ex. 5: Graph a triangle

16

Ex. 3-5: Nested structures

point P;

line L;

triangle T;

P.x = 4;

P.y = 11;

(4, 11)

(2, 7)

(10, 9)

(6, 5)

(2, 0)

(8, 3)

L.p1.x = 2;

L.p1.y = 7;

L.p2.x = 10;

L.p2.y = 9;

T.p1.x = 2;

T.p1.y = 0;

T.p2.x = 6;

T.p2.y = 5;

T.p3.x = 8;

T.p3.y = 3;

17

Arrays of structures

 An ordinary array: One type of data

 An array of structs: Multiple types of data in each
array element.

0 1 2 … 98 99

0 1 2 … 98 99

18

Arrays of structures

 We often use arrays of structures.

 Example:
StudentRecord Class[100];

strcpy(Class[98].Name, "Chan Tai Man");

Class[98].Id = 12345;

strcpy(Class[98].Dept, "COMP");

Class[98].gender = 'M';

Class[0] = Class[98];

. . .

0 1 2 … 98 99

Chan Tai Man

12345 M

COMP

19

Arrays inside structures

 We can use arrays inside structures.

 Example:
struct square{

point vertex[4];

};

square Sq;

 Assign values to Sq using the given square

(4, 3) (10, 3)

(4, 1) (10, 1)

x y x y x y x y

