
1

C++ Concepts

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

– Constructor Function

– Destructor Function

– Const Function and Const Object

– Class and Member Function Prototyping

– Static Member Variable and Static Member Function

– Friend Function

– Friend Class

– Modular Programming

Constructor
• Constructor function is a special member function of a class that is being

automatically called to initialize the member variables of the class when an

object is being created from the class.

• Constructors must have the same name as the class.

• Constructors have no return type (not even void).

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance):

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {

std::cout<<"Account::constructor().............."<<std::endl;

}

};

int main() {

Account bobAccount("10-001", "Bob", 119.0); //Calling constructor

Account* aliceAccount = new Account(“10-002", “Alice", 210.0); //Calling constructor

return 0;

}

Constructor

• Constructors function cannot be static or const

• Member variables are initialized using member initialization list syntax.

• The body of a constructor function is often left empty

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance) :

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {

std::cout<<"Account::constructor().............."<<std::endl;

}

};

int main() {

Account bobAccount("10-001", "Bob", 119.0); //Calling constructor

Account* aliceAccount = new Account(“10-002", “Alice", 210.0); //Calling constructor

return 0;

}

Constructor

• Member initialization list syntax is defined after the constructor parameters.

• Starts with a colon.

• Lists each member variable to initialize along with the initialization value

using direct initialization for that variable, separated by a comma.

• Lists the member variables in the member initializer list in the order in

which they have been defined inside the class.

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance) :

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {

std::cout<<"Account::constructor().............."<<std::endl;

}

};

Default Constructor

• Default Constructor is a constructor with no parameter or argument

• Member variables are initialized with some default values.

class Point {

private:

int _x;

int _y;

public:

Point() :

_x(0),

_y(0) {

std::cout<<“Point::default-constructor().............."<<std::endl;

}

};

int main() {

Point p1; //Calling default constructor

Point* p = new Point(); //Calling default constructor

return 0;

}

Implicit Default Constructor

• Implicit Default Constructor is added by the compiler if no constructor is

defined for the class

• It has empty member initialization list and empty body.

class Point {

private:

int _x;

int _y;

public:

//Point() : {} //Implicit default constructor will be added by compiler

};

int main() {

Point p1; //Calling implicit default constructor

Point* p = new Point(); //Calling implicit default constructor

return 0;

}

Constructor Overloading
• Implicit default constructor will not be added by the compiler if a

constructor is defined for the class.

• Default constructor is necessary if a class object is used to define a member

variable of another class.

• Default constructor is also necessary to define an array of the class type.

• Constructor can be overloaded to define an explicit default constructor

with one more constructors of the class.

class Point {

private:

int _x;

int _y;

public:

Point() :

_x(0),

_y(0) { std::cout<<“Point::default-constructor().............."<<std::endl; }

Point(int x, int y) :

_x(x),

_y(y) { std::cout<<“Point::constructor().............."<<std::endl;}

};

Constructor with Default Arguments

• Constructor with all parameters with default arguments can be called

without any argument, i.e. is also a substitute of an explicit default

constructor.

class Point {

private:

int _x;

int _y;

public:

Point(int x=0, int y=0) :

_x(x),

_y(y) {

std::cout<<“Point::constructor().............."<<std::endl;

}

};

Destructor
• Destructor function is a special member function of a class that is being

automatically called to destroy an object of the class type when the object goes out of

the scope or when delete is called on a class pointer.

• Destructors must have the same name as the class and precedes with tilde.

• Destructors have no return type (not even void) and no parameter.

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance):

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {std::cout<<"Account::constructor().............."<<std::endl; }

~Account() { std::cout<<“Account::destructor()…………”<<std::endl; }

};

int main() {

Account bobAccount("10-001", "Bob", 119.0); //Calling constructor

Account* aliceAccount = new Account(“10-002", “Alice", 210.0); //Calling constructor

//destructors for bobAccount and aliceAccount being called

delete aliceAccount;

return 0;

}

Destructor
• Destructor function cannot be static and cannot be const.

• Destructor function cannot be overloaded.

• If no destructor is defined for a class an implicit destructor will be added by the

compiler and the body of the implicit destructor is empty.

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance):

acctNumber(number),

acctOwner(owner),

acctBalance(balance) { std::cout<<"Account::constructor().............."<<std::endl; }

//~Account() {} //Implicit destructor will be added by the compiler

};

int main() {

Account bobAccount("10-001", "Bob", 119.0); //Calling constructor

Account* aliceAccount = new Account(“10-002", “Alice", 210.0); //Calling constructor

//destructors for bobAccount and aliceAccount being called

delete aliceAccount;

return 0;

}

Explicit Destructor
• Most often the body of the destructor function can be left empty.

• If class object has dynamic memory allocation either by its constructors or by

other functions those memory has to be released by the body of the destructor

function.

• An explicit destructor with non empty body is necessary to avoid memory leak by

the class objects.

class GradePointAvergae{

private:

int _capacity;

int _count;

double* _grades;

public:

GradePointAvergae(int capacity):

_capacity(capacity),

_count(0),

_grades(newdouble[_capacity]) { }

~GradePointAvergae () { delete [] _grades; }

};

int main() {

GradePointAverage bobGPA(40); //Calling constructor

//destructors for bobGPA being called and memory from bobGPA._grades has been released

return 0;

}

Const Function and Const Object

• The state (member variables) of a const object of a class is initialized

when it is being created and are not allowed to be modified.

• Any function of the class that is not declared as a const function in the

class is not allowed to be invoked on a const object as it has potential to

modify the state of the object.

• A function is defined as a const function by using const keyword after the

parameter list.

• The body of the const function is allowed to use the member variables of

the object but not to modify them.

• Only the const functions are allowed to be invoked on the const object of a

class.

• A const function can also be invoked on a non-const object.

Const Function and Const Object

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance) :

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {

cout<<"Account::constructor().............."<<endl;

}

string getAcctNumber() const { return acctNumber; }

string getAcctOwner() const { return acctOwner; }

double getAcctBalance() const { return acctBalance; }

};

int main() {

const Account constAccount("11-111", “Const", 119.0); //State is initialized

std::cout<<constAccount.getAcctNumber()<<“, “<<constAccount.getAcctOwner()<<“, “<<

constAccount.getAcctBalance()<<std::endl;

return 0;

}

Class and Member Functions Prototype

• Most of the examples shown so far have the member functions declared and

defined within the class body. This is called inline definition of member

functions.

• You can also declare and define your class member functions non-inline.

• You can declare the prototype of your member functions inside your class

body.

• Your class definition will be incomplete unless you define or implement the

prototyped member functions.

• You can define or implement prototyped member functions outside your

class body within your class scope.

• You need to add class name and scope operator (: :) before the function

name in order to implement your member function within your class scope.

Prototyped Member Functions

class Account {

private:

string acctNumber;

string acctOwner;

double acctBalance;

public:

Account(string number, string owner, double balance);

~Account();

string getAcctNumber() const;

string getAcctOwner() const;

double getAcctBalance() const;

void deposit(double amount);

void withdraw(double amount);

};

Member Functions Outside Class Body

Account::Account(string number, string owner, double balance):

acctNumber(number),

acctOwner(owner),

acctBalance(balance) {

cout<<"Account::constructor().............."<<endl;

}

Account::~Account(){

cout<<"Account::destructor().............."<<endl;

}

string Account::getAcctNumber() const {

return acctNumber;

}

string Account::getAcctOwner() const {

return acctOwner;

}

double Account::getAcctBalance() const {

return acctBalance;

}

void Account::deposit(double amount) {

acctBalance += amount;

}

void Account::withdraw(double amount) {

acctBalance -= amount;

}

Static Member Variable

• Each object of a class has its own copies of the member variables and for

this reason, modifying the member variables of one object does not modify

the member variables of the other objects of the same class.

• In order to share a member variable by all the objects of a class, you can

declare a member variable static by using static keyword before its type.

• A static member variable exists before any object is created from a class.

• A static member variable can be accessed either on the class or on any

object of the class.

• A static member variable is usually initialized by redefining it as a global

variable on the class scope.

• Any modification of a static member variable is visible to all the objects

of the class.

Static Member Function

• You can also declare a member function static by using static keyword

before its return type to manipulate static member variables of a class.

• A static member function also exists before any object is created from a

class.

• A static member function can also be invoked either on the class or on

any object of the class.

• A static member function body can access any static member variable but

no non-static member variable of the class.

• A static member function body can invoke any other static member

function but no non-static member function of the class.

• As this pointer is a self-reference to an object, this pointer is not available in

the body of a static member function.

• A static member function of a class cannot be a const function.

• A no-static member function can access any static member variable and

can invoke any static member function.

Static Member Variable and Static Member Function

class Student {

private:

static int _id_tracker; //static member variable

string _id;

string _name;

static string id(string prefix) { //static member function

_id_tracker++;

return prefix+to_string(_id_tracker);

}

string id() const { return _id; } //Overloaded non-static id() function

string name() const { return _name; }

public:

Student(const string prefix, const string name): _id(id(prefix)), _name(name) {}

};

int Student::_id_tracker = 0; //Initializing static member variable

int main() {

string prefix = "CSCI00";

Student student1(prefix, "Humayun");

Student student2(prefix, "Kabir");

std::cout<<“id: “<<student1.id()<<“, name: “<<student1.name()<<std::endl;

std::cout<<“id: “<<student2.id()<<“, name: “<<student2.name()<<std::endl;

return 0;

}

Friend Function

• You can declare a friend function of a class by using friend keyword before

its return type in order to give access to the private members of the class.

• A friend function is not a member function of the class and does not need

to define its body on the class scope.

• A friend function can be an independent function or a member function of

another class.

• At least one parameter of the friend function must be class type.

• A friend function is neither private nor public irrespective of its position

(private block or public block) inside class body

Friend Function
class Point {

private:

int _x;

int _y;

public:

Point(int x=0, int y=0) :

_x(x),

_y(y) {

std::cout<<“Point::constructor().............."<<std::endl;

}

friend void show(const Point& p);

};

void show(const Point& p) {

std::cout<<“<“<<p._x<<“,”<<p._y<<“>”<<std::endl;

}

int main() {

Point p1(3,4);

show(p1);

return 0;

}

Friend Class

• You can make a member function of another class a friend function of

your class the same way you make an independent function a friend function

of your class.

• If you need to give access to the private members of your class to all the

member functions of another class, it is better to make that class a friend

class of your class.

• You can make another class your friend class using friend keyword.

• Your class will not automatically become a friend class of the class that

you have made your friend class. That class has to make your class a friend

class explicitly, if necessary.

Friend Class
class Node {

private:

int data;

Node* next;

public:

Node():data(0), next(NULL) {}

Node(int data): data(data), next(NULL) {}

int getData() {return data;}

friend class LinkedList;

};

class LinkedList {

private:

Node* head;

public:

LinkedList():head(new Node) {}

~LinkedList();

void append(int data);

bool remove(int data);

Node* search(int data);

void show();

};

Friend Class

LinkedList::~LinkedList() {

Node* current = head->next;

while(current!= NULL) {

Node* temp = current;

current = current->next;

delete temp;

}

delete head;

cout<<"LinkedList destructor"<<endl;

}

Friend Class

void LinkedList::append(int data) {

Node* newNode = new Node(data);

Node* current = head->next;

if(current == NULL) {

head->next = newNode;

}

else {

while(current->next != NULL) {

current = current->next;

}

current->next = newNode;

}

}

Friend Class

Node* LinkedList::search(int data) {

Node* current = head->next;

while(current!= NULL) {

if(current->data == data){

return current;

}

current = current->next;

}

return NULL;

}

Modular Programming

• Most of the examples shown so far have codes for class declaration,

member function definition, and using class objects in the same file. This

non-modular approach is okay with smaller applications with smaller

number of smaller classes.

• Real life applications are big, they are composed of hundreds of large

classes, and they have to be programmed in a modular approach.

• In modular approach, you can declare the prototype of your class in a

header file.

• You can define or implement the member functions of your class in a

separate implementation file by including the header file of your class.

• You can use objects from your class in a separate file again by including

the header file of your class.

Modular Programming: Header File

#ifndef __CIRCLE_HEADER__

#define __CIRCLE_HEADER__

class Circle {

private:

double radious;

public:

Circle ();

Circle(double radious);

~Circle();

double getCircum();

double getArea();

};

#endif

Modular Programming: Implementation File

#include <iostream>

#include "circle.h"

using namespace std;

Circle::Circle(): radious(0.0) {}

Circle::Circle(double radious): radious(radious) { }

Circle::~Circle() {

cout<< "Circle destructor is being called....."<<endl;

}

double Circle::getCircum() {

return 2.0*3.14*radious;

}

double Circle::getArea() {

return 3.14*radious*radious;

}

Modular Programming: Application File

#include <iostream>

#include "circle.h"

using namespace std;

int main() {

Circle foo(10.0);

cout<<"foo circumference: "<<foo.getCircum()<<endl;

cout<<"foo area: "<<foo.getArea()<<endl;

Circle bar = 20.0;

cout<<"bar circumference: "<<bar.getCircum()<<endl;

cout<<"bar area: "<<bar.getArea()<<endl;

Circle baz {30.0}; //uniform initializer

cout<<"baz circumference: "<<baz.getCircum()<<endl;

cout<<"baz area: "<<baz.getArea()<<endl;

Circle qux = {40.0}; //uniform initializer

cout<<"qux circumference: "<<qux.getCircum()<<endl;

cout<<"qux area: "<<qux.getArea()<<endl;

return 0;

}

