
1

Object Oriented Concepts

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Outline

– Objects and Classes

– Message Passing

– Encapsulation

Real World Objects

Real-world objects have attributes and behaviors.

Examples:

– Dog (Physical)

• Attributes: breed, color, hungry, tired, etc.

• Behaviors: eat, sleep, bark, run etc.

– Bank Account (Conceptual)

• Attributes: account number, owner, balance

• Behaviors: withdraw, deposit

Software Objects

Software objects are conceptual objects, a computational model

of real-world objects and processes, also have attributes (state)

and behaviors (operations).

– Object’s attributes are represented as object’s variables.

– Object’s Behaviors are represented as object’s functions or

methods.

– Only the functions of an object should operate on its

variables.

Software Objects: Example

object: bobAccount

deposit($50)

withdraw($25)

balance: $119

number: 10-001

owner: Bob

object: aliceAccount

deposit($100)

withdraw($50)

balance: $210

number: 10-002

owner: Alice

Class

• The definitions of the attributes and behaviours of
similar objects are organized into a class (type), e.g.,
Account as a generic definition for Bob, Alice and Jack’s
Accounts)

• A class can be thought of as a model used to create a set
of objects.

• A class is a static definition; a piece of code written in a
programming language.

• One or more objects of a class are instantiated at
runtime.

• The objects from a class are called instances of the
class.

Class: Example

• The "account" class describes the

attributes and behaviors of the

bank accounts of many people.

• The “account” class is defined by

three state variables (account

number, owner, and balance)

and two functions (deposit and

withdraw).

class: Account

deposit()

withdraw()

balance:

number:

owner:

Class

• Every instance of the same class will have the same set of

variables.

• Each instance will however have its own copy of the variable

set with distinct values. A variable of a class in two instances

are essentially two distinct and independent variables except

they are of the same type, one does not affect the other anyway.

• Every instance of the same class will also have the same set of

functions.

• Instance functions simply point to their class counter parts

instead making individual copy of the same function.

Object-Oriented Programming

• The programmer defines the classes (types) of the objects

that will exist.

• The programmer creates object instances from the defined

types as they are needed.

• The programmer specifies how these objects (various types)

will communicate or interact with each other.

• Object-Oriented Programming (OOP) is a way to organize

and conceptualize a program as a set of interacting objects.

Bank Example

• When the program runs there will be many instances of

the account class.

• Each instance will have its own account number,

owner, and balance (object state)

balance: $119

number: 10-001

bobAccount

owner: Bob

balance: $210

number: 10-002

aliceAccount

owner: Alice

balance: $330

number: 10-003

zackAccount

owner: Zack

• Object’s functions can only be invoked.

Classes

• Account class definition in C++.

class Account {

private:

string acctNumber;

string acctOowner;

double acctBalance;

public:
void setAcctNumber(string number) {acctNumber = number;}

void setAcctOwner(string owner) {acctOwner = owner;}

void setAcctBalance(double balance) {acctBalance = balance;}

string getAcctNumber() {return acctNumber;}

string getAcctOwner() {return acctOwner;}

double getAcctBalance() {return acctBalance;}

void deposit(double amount) {acctBalance += amount;}

void withdraw(double amount) {acctBalance -= amount;}

};

Classes
• Account class usage in C++.

int main () {

Account bobAccount;

bobAccount.setAcctNumber(“10-001”);

bobAccount.setAcctOwner(“Bob”);

bobAccount.setAcctBalance(119.0);

Account aliceAccount;

aliceAccount.setAcctNumber(“10-002”);

aliceAccount.setAcctOwner(“Alice”);

aliceAccount.setAcctBalance(210.0);

bobAccount.deposit(50,0);

aliceAccount.withdraw(60.0);

cout << “Account: ” << bobAccount.getAcctNumber() <<

“ Owner: “ << bobAccount.getAcctOwner() <<

“ Balance: $“ << bobAccount.getAcctBalance() <<endl;

cout << “Account: ” << aliceAccount.getAcctNumber() <<

“ Owner: “ << aliceAccount.getAcctOwner() <<

“ Balance: $“ << aliceAccount.getAcctBalance() << endl;

return 0;

}

Object’s Interactions: Messages

 Conceptually, one object communicates with another object by

message passing.

• Message components include:

– The name of the object to receive the message.

– The name of the service (function execution) to perform.

– Any parameters needed for the function.

theManager theEmployee

//Message

//To: theEmployee

//Function: getHired

//Parameters: salary = $45,000, start_date = 10/21/19

theEmployee.getHired(45000, 10/21/19)

Encapsulation

• When classes are defined, programmers can specify that certain
functions and variables remain hidden inside the class.

• These variables and functions are accessible from within the
class, but not accessible from the outside.

• The mechanism to place all the variables and the functions of an
object into a single class definition and selectively hide them
from external access is known as encapsulation.

Hidden State

Variables and

Functions

Visible Functions

Visible Variables

Encapsulation

State variables make up the nucleus of the object. Functions

surround and hide (encapsulate) the state variables from the

rest of the program.

acctBalance

acctNnumber

setAcctNumber()

getAcctNumber()

setAccBalance()

getAcctBalance()

Private

(hidden)

Instance

variables

Public (not

hidden)

functions

deposit()

withdraw()acctOwner

setAcctOwner()

getAcctOwner()

