Operator
Overloading

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Operator Overloading

You can redefine or overload the behaviour of most built-in
operators in C++ on a class.

You can overload any of the following operators:
— Arithmetic: + - * /| % ++ --

— Bitwise: * & | ~ I = << >>

— Assignment: = += -= *= /= Op= = &= |= >>= <<=
— Logical: == 1= <= >= && |

— Others: , ->* -> () [] new delete new[] delete[]

You cannot overload any of the following operators:
.. (scope resolution)
. (member access)
* (member access through pointer to member)
?: (ternary conditional)

Operator Overloading

You cannot create any new operators, such as ** <> &|

You cannot change the precedence, grouping, or number of
operands of operators.

At least one of the operands of your overloaded operator
must be of your class type.

An overloaded operator is called an operator function.

You declare an operator function with the keyword operator
preceding the operator symbol.

Keyword operator and an operator symbol together becomes
the name of a operator function.

Operator Overloading

Operator functions can be either member functions or friend
fucntions.

Unary operators must be overloaded as member functions.

Binary operators with both operands of your class type
should be overloaded as member functions, although they can
be overloaded as friend functions.

Binary operators with the first operand of different type
must be overloaded as friend functions.

Member Operator Function

class Point {
private:
int X;
inty;
public:

Point(int X, int y): x(X), y(y) {}
Point& operator ++ () {

+4X:
++y;
return *this;
}
}
int main() {

Point p1(1,2);
++pl; I/ pl.operator++(), pl(2,3)
return O;

Member Operator Function

class Point {
private:
int x;
inty;
public:

Point(int X, int y): x(X), y(y) {}
Point operator + (const Point &rhs) {
return Point(x+rhs.x, y+rhs.y);

by
2
int main() {
Point p1(1,2);
Point p2(3,4);
Point p3 =pl + p2; //pl.operator+(p2), p3(4,6)
return O;

Friend Operator Function

class Point {
private;
int X;
inty;
public:
Point(int x, inty): x(x), y(y) {}
friend Point operator + (const Point &lhs, const Point &rhs);
b

Point operator + (const Point &Ihs, const Point &rhs); {
return Point(lhs.x+rhs.x, Ihs.y+rhs.y);
¥
int main() {
Point p1(1,2);
Point p2(3,4);
Point p3 = pl + p2; // operator+(pl, p2), p3(4,6)
return O;

Friend Operator Function

class Point {
private:
Int x;
inty;
public:
Point(int x, int y): x(x), y(y) {}
friend Point operator + (const int z, const Point &rhs);
2

Point operator + (const int z, const Point &rhs); {
return Point(z+rhs.x, z+rhs.y);
¥
int main() {
Point p1(1,2);
Pointp2=5+p2; //operator+(5, p2), p3(6,7)
return O;

Friend Operator Function

class Point {
private:
int x;
inty;
public:
Point(int x, int y): x(x), y(y) {}
friend std::ostream& operator << (std::ostream& out, const Point &rhs);
o
std::ostream& operator << (std::ostream& out, const Point &rhs); {
OUt<<“<<<rhs. X<<*,’<<rhs.y<<*>”;

return out;
¥
int main() {
Point p1(1,2);
std::cout<<pl<<std::endl; /l operator<<(std::cout, pl), <1,2>
return O;

