
Operator

Overloading

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Operator Overloading

• You can redefine or overload the behaviour of most built-in

operators in C++ on a class.

• You can overload any of the following operators:

– Arithmetic: + - * / % ++ --

– Bitwise: ^ & | ~ ! = << >>

– Assignment: = += -= *= /= %= ^= &= |= >>= <<=

– Logical: == != <= >= && ||

– Others: , ->* -> () [] new delete new[] delete[]

• You cannot overload any of the following operators:

:: (scope resolution)

. (member access)

.* (member access through pointer to member)

?: (ternary conditional)

Operator Overloading

• You cannot create any new operators, such as ** <> &|

• You cannot change the precedence, grouping, or number of

operands of operators.

• At least one of the operands of your overloaded operator

must be of your class type.

• An overloaded operator is called an operator function.

• You declare an operator function with the keyword operator

preceding the operator symbol.

• Keyword operator and an operator symbol together becomes

the name of a operator function.

Operator Overloading

• Operator functions can be either member functions or friend

fucntions.

• Unary operators must be overloaded as member functions.

• Binary operators with both operands of your class type

should be overloaded as member functions, although they can

be overloaded as friend functions.

• Binary operators with the first operand of different type

must be overloaded as friend functions.

Member Operator Function

class Point {

private:

int x;

int y;

public:

Point(int x, int y): x(x), y(y) {}

Point& operator ++ () {

++x;

++y;

return *this;

}

};

int main() {

Point p1(1,2);

++p1; // p1.operator++(), p1(2,3)

return 0;

}

Member Operator Function

class Point {

private:

int x;

int y;

public:

Point(int x, int y): x(x), y(y) {}

Point operator + (const Point &rhs) {

return Point(x+rhs.x, y+rhs.y);

}

};

int main() {

Point p1(1,2);

Point p2(3,4);

Point p3 = p1 + p2; // p1.operator+(p2), p3(4,6)

return 0;

}

Friend Operator Function

class Point {

private:

int x;

int y;

public:

Point(int x, int y): x(x), y(y) {}

friend Point operator + (const Point &lhs, const Point &rhs);

};

Point operator + (const Point &lhs, const Point &rhs); {

return Point(lhs.x+rhs.x, lhs.y+rhs.y);

}

int main() {

Point p1(1,2);

Point p2(3,4);

Point p3 = p1 + p2; // operator+(p1, p2), p3(4,6)

return 0;

}

Friend Operator Function

class Point {

private:

int x;

int y;

public:

Point(int x, int y): x(x), y(y) {}

friend Point operator + (const int z, const Point &rhs);

};

Point operator + (const int z, const Point &rhs); {

return Point(z+rhs.x, z+rhs.y);

}

int main() {

Point p1(1,2);

Point p2 = 5 + p2; // operator+(5, p2), p3(6,7)

return 0;

}

Friend Operator Function

class Point {

private:

int x;

int y;

public:

Point(int x, int y): x(x), y(y) {}

friend std::ostream& operator << (std::ostream& out, const Point &rhs);

};

std::ostream& operator << (std::ostream& out, const Point &rhs); {

out<<“<“<<rhs.x<<“,”<<rhs.y<<“>”;

return out;

}

int main() {

Point p1(1,2);

std::cout<<p1<<std::endl; // operator<<(std::cout, p1), <1,2>

return 0;

}

