Sort Algorithms

Humayun Kabir

Professor, CS, Vancouver Island University, BC, Canada

Sorting

- *Sorting* is a process that organizes a collection of data into either ascending or descending order.
- An *internal sort* requires that the collection of data fit entirely in the computer's main memory.
- We can use an *external sort* when the collection of data cannot fit in the computer's main memory all at once but must reside in secondary storage such as on a disk.
- We will analyze only internal sorting algorithms.

Sorting

- Any significant amount of computer output is generally arranged in some sorted order so that it can be interpreted.
- Sorting also has indirect uses. An initial sort of the data can significantly enhance the performance of an algorithm.
- Majority of programming projects use a sort somewhere, and in many cases, the sorting cost determines the running time.
- A comparison-based sorting algorithm makes ordering decisions only on the basis of comparisons.

Sorting Algorithms

- There are many comparison based sorting algorithms, such as:
 - Bubble Sort
 - Selection Sort
 - Insertion Sort
 - Merge Sort
 - Quick Sort

Bubble Sort

- The list is divided into two sublists: sorted and unsorted.
- Starting from the bottom of the list, the smallest element is bubbled up from the unsorted list and moved to the sorted sublist.
- After that, the wall moves one element ahead, increasing the number of sorted elements and decreasing the number of unsorted ones.
- Each time an element moves from the unsorted part to the sorted part one sort pass is completed.
- Given a list of n elements, bubble sort requires up to n-1 passes to sort the data.

Bubble Sort

23	78	45	8	32	56	Original List
ı	ı					
8	23	78	45	32	56	After pass 1
	1	I	•		•	•
8	23	32	78	45	56	After pass 2
		1	1		-	'
8	23	32	45	78	56	After pass 3
			1	1		1
8	23	32	45	56	78	After pass 4
					!	1

Bubble Sort Algorithm

```
void swap( int &lhs, int &rhs );
void bubleSort(int a[], int n) {
   bool sorted = false;
   int last = n-1;
   for (int i = 0; (i < last) && !sorted; i++) {
      sorted = true;
      for (int j=last; j > i; j--)
         if (a[j-1] > a[j] {
            swap(a[j],a[j-1]);
            sorted = false; // signal exchange
void swap( int &lhs, int &rhs ) {
  int tmp = lhs;
  lhs = rhs;
  rhs = tmp;
```

Bubble Sort – Analysis

- In general, we compare keys and move items (or exchange items) in a sorting algorithm (which uses key comparisons).
 - **→** So, to analyze a sorting algorithm we should count the number of key comparisons and the number of moves.
 - Ignoring other operations does not affect our final result.

Bubble Sort – Analysis

• Best-case:

 \rightarrow O(n)

- Array is already sorted in ascending order.
- Outer loop executes 1 time and inner loop n-1 times.
- The number of moves: 0

 \rightarrow O(1)

- The number of key comparisons: (n-1) \rightarrow O(n)
- Worst-case: \rightarrow O(n²)
 - Array is in reverse order:
 - Outer loop is executed n-1 times and inner loop executes (n-1-i) times,
 - The number of moves: 3*((n-1)+(n-2)+...+3+2+1) = 3*n*(n-1)/2

 \rightarrow O(n²)

- The number of key comparisons: ((n-1)+(n-2)+...+3+2+1) = n*(n-1)/2 → $O(n^2)$
- Average-case: \rightarrow O(n²)
 - We have to look at all possible initial data organizations.
- So, Bubble Sort is O(n²)

Comparison of N, log N and N^2

N	O(LogN)	$O(N^2)$
16	4	256
64	6	4K
256	8	64K
1,024	10	1 M
16,384	14	256M
131,072	17	16G
262,144	18	6.87E+10
524,288	19	2.74E+11
1,048,576	20	1.09E+12
1,073,741,824	30	1.15E+18

Selection Sort

- The list is divided into two sublists, *sorted* and *unsorted*, which are divided by an imaginary wall.
- We find the smallest element from the unsorted sublist and swap it with the element at the beginning of the unsorted data.
- After each selection and swapping, the imaginary wall between the two sublists move one element ahead, increasing the number of sorted elements and decreasing the number of unsorted ones.
- Each time we move one element from the unsorted sublist to the sorted sublist, we say that we have completed a sort pass.
- A list of n elements requires n-1 passes to completely rearrange the data.

Selection Sort

Sor	ted			Unsor	ted		
	23	78	45	8	32	56	Original List
							_
	8	78	45	23	32	56	After pass 1
			1				
	8	23	45	78	32	56	After pass 2
			1				•
	8	23	32	78	45	56	After pass 3
							•
	8	23	32	45	78	56	After pass 4
					1	<u> </u>	•
	8	23	32	45	56	78	After pass 5

Selection Sort

```
void swap( int &lhs, int &rhs );

void selectionSort( int a[], int n) {
  for (int i = 0; i < n-1; i++) {
    int min = i;
    for (int j = i+1; j < n; j++) {
       if (a[j] < a[min]) min = j;
    }
    swap(a[i], a[min]);
  }
}</pre>
```

Selection Sort -- Analysis

- In selectionSort function, the outer for loop executes n-1 times.
- We invoke swap function once at each iteration.
 - → Total Swaps: n-1
 - \rightarrow Total Moves: 3*(n-1) (Each swap has three moves)

Selection Sort – Analysis (cont.)

- The inner for loop executes the size of the unsorted part minus 1 (n-1-i), and in each iteration we make one key comparison.
 - \rightarrow # of key comparisons = ((n-1)+(n-2)+...+3+2+1) = n*(n-1)/2
 - \rightarrow So, Selection sort is $O(n^2)$
- The best case, the worst case, and the average case of the selection sort algorithm are same. \rightarrow all of them are $O(n^2)$
 - This means that the behavior of the selection sort algorithm does not depend on the initial organization of data.
 - Since O(n²) grows so rapidly, the selection sort algorithm is appropriate only for small n.
 - Although the selection sort algorithm requires $O(n^2)$ key comparisons, it only requires O(n) moves.
 - A selection sort could be a good choice if data moves are costly but key comparisons are not costly (short keys, long records).

Insertion Sort

- Insertion sort is a simple sorting algorithm that is appropriate for small inputs.
 - Most common sorting technique used by card players.
- The list is divided into two parts: sorted and unsorted.
- In each pass, the first element of the unsorted part is picked up, transferred to the sorted sublist, and inserted at the appropriate place.
- A list of *n* elements will take at most *n-1* passes to sort the data.

Insertion Sort

Sorted	Unsorted					
23	78	45	8	32	56	Original List
23	78	45	8	32	56	After pass 1
•		•	•			•
23	45	78	8	32	56	After pass 2
						'
8	23	45	78	32	56	After pass 3
	•	'			!	•
8	23	32	45	78	56	After pass 4
						1
8	23	32	45	56	78	After pass 5

Insertion Sort Algorithm

```
void insertionSort(int a[], int n) {
  for (int i = 1; i < n; i++) {
    int tmp = a[i];
    int j = i;
    for (; j>0 && tmp < a[j-1]; j--) {
       a[j] = a[j-1];
    }
    a[j] = tmp;
}</pre>
```

Insertion Sort – Analysis

• Running time depends on not only the size of the array but also the contents of the array.

• Best-case: \rightarrow O(n)

- Array is already sorted in ascending order.
- Inner loop will not be executed.
- − The number of moves: 2*(n-1) → O(n)
- The number of key comparisons: (n-1) \rightarrow O(n)

• Worst-case: \rightarrow $O(n^2)$

- Array is in reverse order:
- Inner loop is executed i-1 times, for i = 2,3, ..., n
- The number of moves: 2*(n-1)+(1+2+...+n-1)=2*(n-1)+n*(n-1)/2 \rightarrow O(n²)
- The number of key comparisons: (1+2+...+n-1)=n*(n-1)/2 \rightarrow $O(n^2)$
- Average-case: \rightarrow $O(n^2)$
 - We have to look at all possible initial data organizations.
- So, Insertion Sort is O(n²)

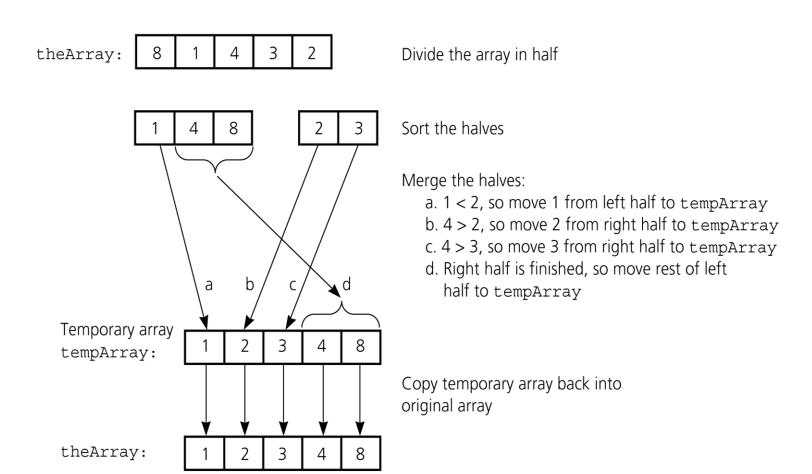
Analysis of Insertion sort

- Which running time will be used to characterize this algorithm?
 - Best, worst or average?
- Worst:
 - Longest running time (this is the upper limit for the algorithm)
 - It is guaranteed that the algorithm will not be worse than this.
- Sometimes we are interested in average case. But there are some problems with the average case.
 - It is difficult to figure out the average case. i.e. what is average input?
 - Are we going to assume all possible inputs are equally likely?
 - In fact for most algorithms average case is same as the worst case.

Mergesort

- Mergesort algorithm is one of two important divide-and-conquer sorting algorithms (the other one is quicksort).
- It is a recursive algorithm.
 - Divides the list into halves,
 - Sort each halve separately, and
 - Then merge the sorted halves into one sorted array.

Mergesort - Example



Merge Sort

```
void merge(int theArray[], int first, int mid, int last) {
  int tempArray[last+1]; // temporary array
  int last1 = mid; // end of first subarray
  int first2 = mid + 1; // beginning of second subarray
  int index = first1; // next available location in tempArray
  for ( ; (first1 <= last1) && (first2 <= last2); ++index) {
     if (theArray[first1] < theArray[first2]) {</pre>
       tempArray[index] = theArray[first1];
       ++first1;
     else {
        tempArray[index] = theArray[first2];
        ++first2;
 //Continued to the next page.....
```

Merge Sort (cont.)

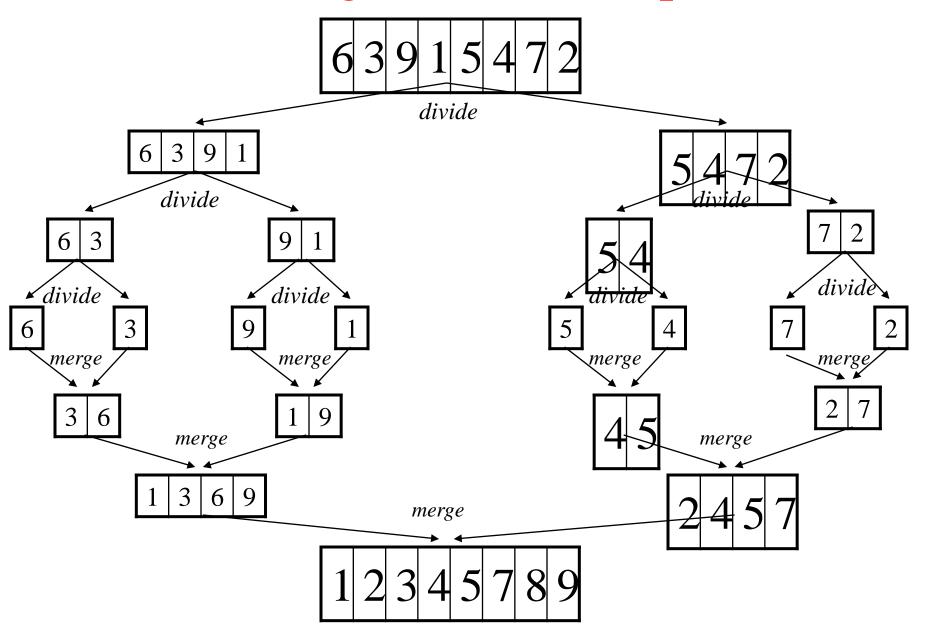
//Continued from the previous page......

```
// finish off the first subarray, if necessary
for (; first1 <= last1; ++first1, ++index)</pre>
   tempArray[index] = theArray[first1];
// finish off the second subarray, if necessary
for (; first2 <= last2; ++first2, ++index)</pre>
   tempArray[index] = theArray[first2];
// copy the result back into the original array
for (index = first; index <= last; ++index)</pre>
   theArray[index] = tempArray[index];
```

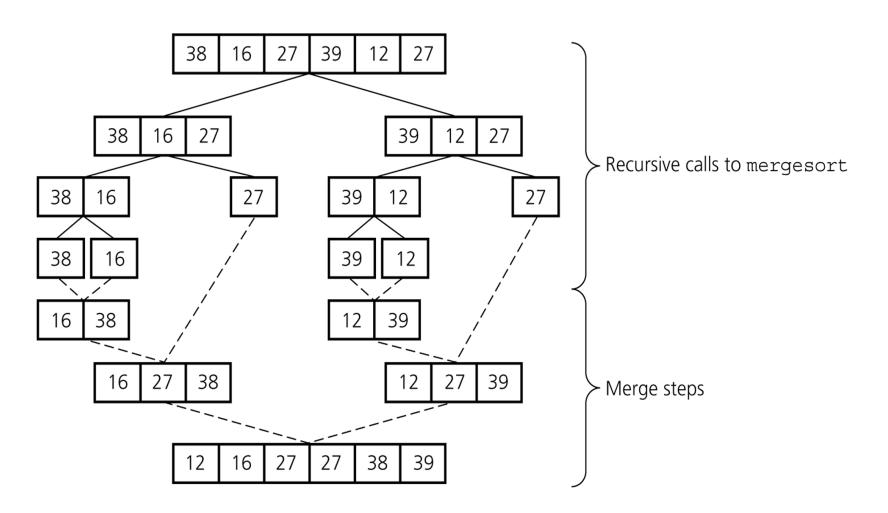
Merge Sort

```
void mergesort(int theArray[], int first, int last) {
   if (first < last) {
      int mid = (first + last)/2; // index of midpoint
      // dived into two halves at the middle
      mergesort(theArray, first, mid);
      mergesort(theArray, mid+1, last);
      // merge the two halves
      merge(theArray, first, mid, last);
```

Merge Sort - Example



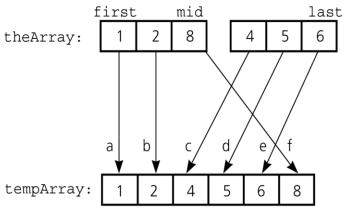
Mergesort – Example 2



Mergesort – Analysis of Merge

A worst-case instance of the merge step in *mergesort*

Some elements in the first array are smaller and some elements are larger than all the elements in the second array



Merge the halves:

a. 1 < 4, so move 1 from theArray[first..mid] to tempArray

b. 2 < 4, so move 2 from the Array [first..mid] to tempArray

c. 8 > 4, so move 4 from theArray [mid+1..last] to tempArray

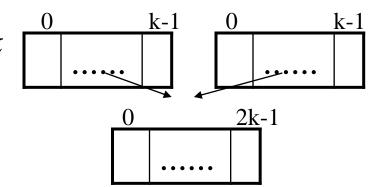
d. 8 > 5, so move 5 from the Array [mid+1..last] to tempArray

e. 8 > 6, so move 6 from the Array [mid+1..last] to tempArray

f. theArray [mid+1..last] is finished, so move 8 to tempArray

Mergesort – Analysis of Merge (cont.)

Merging two sorted arrays of size k



• Best-case:

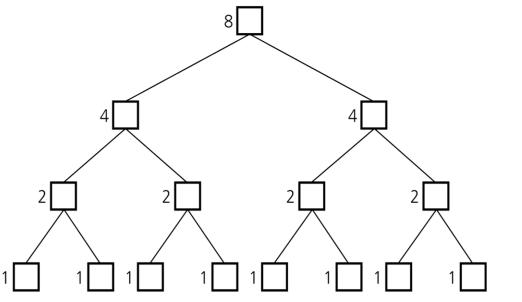
- All the elements in the first array are smaller (or larger) than all the elements in the second array.
- The number of moves: 2k + 2k
- The number of key comparisons: k

• Worst-case:

- The number of moves: 2k + 2k
- The number of key comparisons: 2k-1

Mergesort - Analysis

Levels of recursive calls to *mergesort*, given an array of eight items



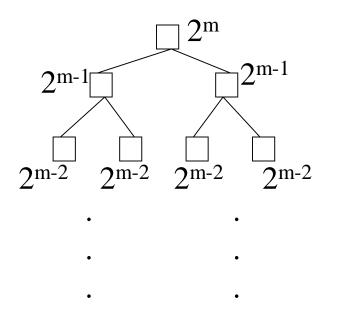
Level 0: mergesort 8 items

Level 1: 2 calls to mergesort with 4 items each

Level 2: 4 calls to mergesort with 2 items each

Level 3: 8 calls to mergesort with 1 item each

Mergesort - Analysis



level 0:1 merge (size 2^{m-1})

level 1 : 2 merges (size 2^{m-2})

level 2 : 4 merges (size 2^{m-3})

level i : 2ⁱ merges (size 2^{m-i-1})

$$2^0$$
 2^0

level m-1 : 2^{m-1} merges (size 2^0)

Mergesort - Analysis

• Worst-case —

 \rightarrow O (n * log₂n)

The number of key comparisons:

$$= 2^{0*}(2*2^{m-1}-1) + 2^{1*}(2*2^{m-2}-1) + ... + 2^{m-1*}(2*2^{0}-1)$$

$$= (2^{m}-2^{0}) + (2^{m}-2^{1}) + ... + (2^{m}-2^{m-1}) \qquad (m \text{ terms })$$

$$= m2^{m} - (2^{0} + 2^{1} + + 2^{m-1})$$

$$= m*2^{m} - \sum_{i=0}^{m-1} 2^{i}$$

$$= m*2^{m} - 2^{m} - 1$$
Using $m = \log n$

$$= \mathbf{n} * \log_{2} \mathbf{n} - \mathbf{n} - \mathbf{1}$$

Mergesort – Analysis

- Mergesort is extremely efficient algorithm with respect to time.
 - Both worst case and average cases are $O(n * log_2 n)$
- But, mergesort requires an extra array whose size equals to the size of the original array.

Quicksort

- Like mergesort, Quicksort is also based on the *divide-and-conquer* paradigm.
- But it uses this technique in a somewhat opposite manner, as all the hard work is done *before* the recursive calls.
- It works as follows:
 - 1. First, it partitions an array into two parts with respect to a pivot,
 - 2. Then, it sorts the parts independently,
 - 3. Finally, it combines the sorted subsequences by a simple concatenation.

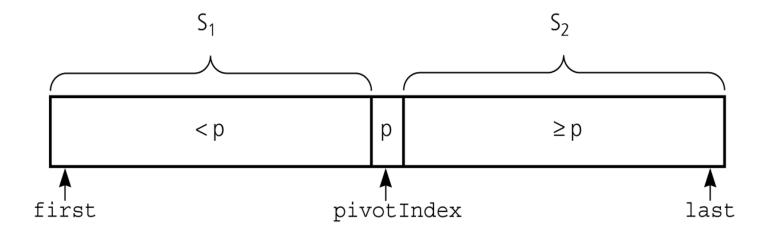
Quicksort (cont.)

The quick-sort algorithm consists of the following three steps:

- 1. *Divide*: Partition the list.
 - To partition the list, we first choose some element from the list for which we hope about half the elements will come before and half after. Call this element the *pivot*.
 - Then we partition the elements so that all those with values less than the pivot come in one sublist and all those with greater values come in another.
- 2. *Recursion*: Recursively sort the sublists separately.
- 3. *Conquer*: Put the sorted sublists together.

Quick Sort Partition

• Partitioning places the pivot in its correct place position within the array.



Quick Sort Partition

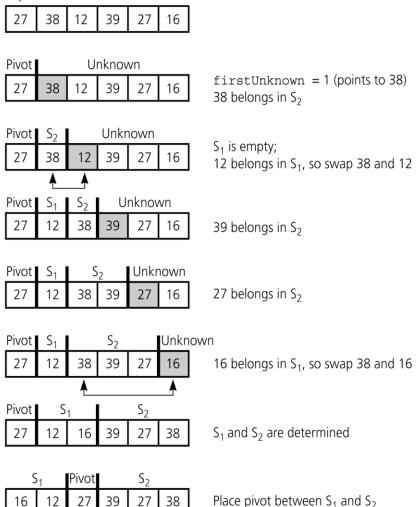
- Generates two smaller sorting problems.
 - Sort the left section of the array
 - Sort the right section of the array
 - Two smaller sorting problems are solved recursively to solve bigger sorting problem.

Quick Sort Partition: Choosing Pivot

- Which array item should be selected as pivot?
 - Somehow we have to select a pivot, and we hope that we will get a good partitioning.
 - If the items in the array arranged randomly, we choose a pivot randomly.
 - We can choose the first or last element as a pivot (it may not give a good partitioning).
 - We can use different techniques to select the pivot.
- Put this pivot into the first location of the array before partitioning

Pivot 39 Original array: 38 12 27 16

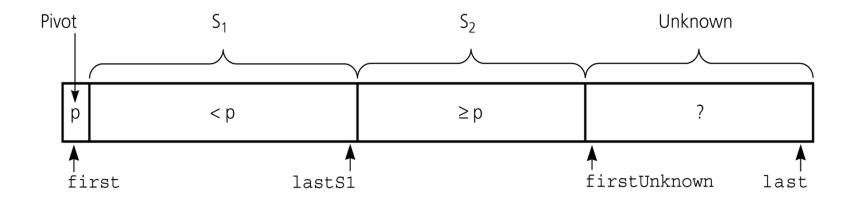
Developing the first partition of an array when the pivot is the first item



First partition:

S ₁		Pivot	S_2		
16	12	27	39	27	38

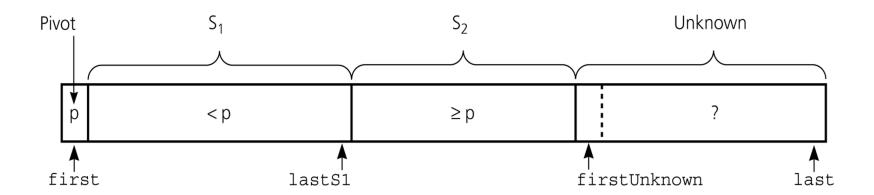
Invariant for the partition algorithm



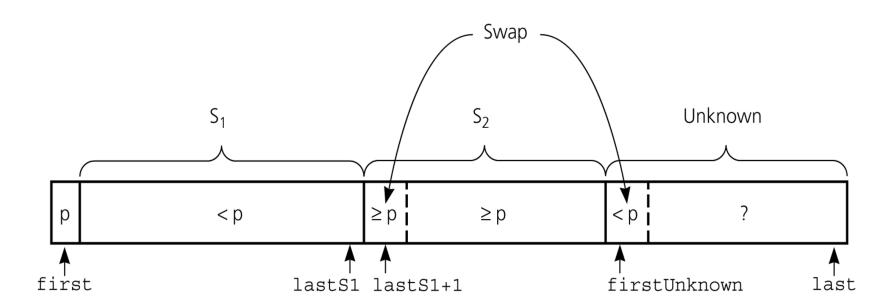
S1: theArray[first+1..lastS1] < pivot</pre>

S2: theArray[lastS1+1..firstUnknown-1] >= pivot

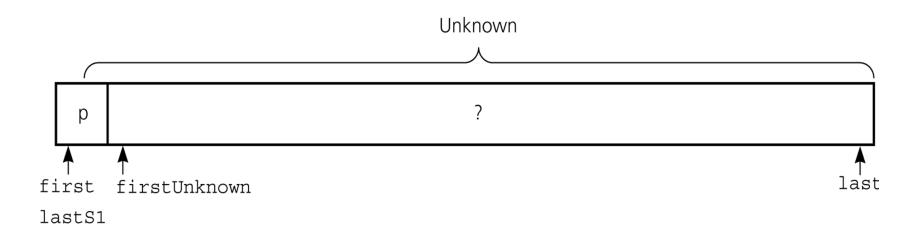
When theArray[firstUnknown] >= pivotMove theArray[firstUnknown] into S_2 by incrementing firstUnknown.



When theArray[firstUnknown] < pivot
Move theArray[firstUnknown] into S₁ by
swapping theArray[firstUnknown] with theArray[lastS1+1] and
incrementing both lastS1 and firstUnknown.



Initial state of the array



```
lastS1 = first
firstUnknown = first + 1
S1: theArray[first+1..lastS1]: Empty
S2: theArray[lastS1+1..firstUnknown-1]: Empty
```

Partition Function

```
void swap( int &lhs, int &rhs );
void partition(int theArray[], int first, int last,
            int &pivotIndex) {
   // Choose and place pivot in theArray[first]
   choosePivot(theArray, first, last);
   // Initialize
   int pivot = theArray[first];
   int lastS1 = first;
   int firstUnknown = first + 1;
```

//Continued to the next page.....

Partition Function (cont.)

//Continued from the previous page......

```
// Move one item at a time until unknown region is empty
for (; firstUnknown <= last; ++firstUnknown) {</pre>
   if (theArray[firstUnknown] < pivot) { // Belongs to S1
      ++lastS1; // Expands S1 by incrementing lastS1
       // Swap firstUnknown with lastS1
       swap(theArray[firstUnknown], theArray[lastS1]);
   // else belongs to S2, ++firstUnknown in the loop
   // places it to S2
// Place pivot in proper position and mark its location
swap(theArray[first], theArray[lastS1]);
pivotIndex = lastS1;
```

Quicksort Function

```
void quicksort(int theArray[], int first, int last) {
   int pivotIndex;
   if (first < last) {
       // create the partition: S1, pivot, S2
       partition(theArray, first, last, pivotIndex);
       // sort regions S1 and S2
       quicksort(theArray, first, pivotIndex-1);
       quicksort(theArray, pivotIndex+1, last);
   }
}</pre>
```

Original array:

5 3 6 7 4

Pivot Unknown
5 3 6 7 4

 Pivot
 S1
 Unknown

 5
 3
 6
 7
 4

Pivot S_1 S_2 Unknown S_1 S_2 S_2 S_3 S_4 S_4

Pivot S_1 S_2 Unknown S_3 S_4 S_4 S_5 S_6 S_7 S_8

S₁ and S₂ are determined

First partition:

 S_1 Pivot S_2 4 3 5 7 6

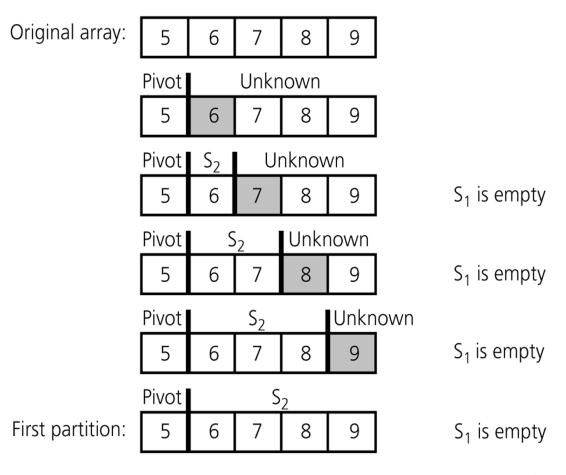
Place pivot between S₁ and S₂

case partitioning with quicksort

An average-

- Quicksort is $O(n*log_2n)$ in the best case and average case.
- Quicksort is slow when the array is sorted and we choose the first element as the pivot.
- Although the worst case behavior is not so good, its average case behavior is much better than its worst case.
 - So, Quicksort is one of best sorting algorithms using key comparisons.

A worst-case partitioning with quicksort



4 comparisons, 0 exchanges

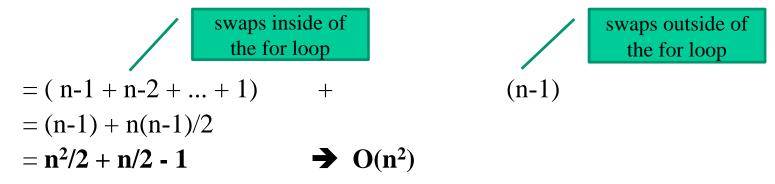
Worst Case: (assume that we are selecting the first element as pivot)

- The pivot divides the list of size n into two sublists of sizes 0 and n-1.
- The number of key comparisons

=
$$n-1 + n-2 + ... + 1$$

= $n(n-1)/2$
= $n^2/2 - n/2$ \rightarrow $O(n^2)$

– The number of swaps =



• So, Quicksort is $O(n^2)$ in worst case

Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort	n^2	n^2
Bubble sort	n ²	n ²
Insertion sort	n ²	n ²
Mergesort	n * log n	n * log n
Quicksort	n ²	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n
•	•	9