
Sort Algorithms

Humayun Kabir
Professor, CS, Vancouver Island University, BC, Canada

Sorting

• Sorting is a process that organizes a collection of data

into either ascending or descending order.

• An internal sort requires that the collection of data fit

entirely in the computer’s main memory.

• We can use an external sort when the collection of

data cannot fit in the computer’s main memory all at

once but must reside in secondary storage such as on a

disk.

• We will analyze only internal sorting algorithms.

Sorting

• Any significant amount of computer output is generally

arranged in some sorted order so that it can be

interpreted.

• Sorting also has indirect uses. An initial sort of the data

can significantly enhance the performance of an

algorithm.

• Majority of programming projects use a sort

somewhere, and in many cases, the sorting cost

determines the running time.

• A comparison-based sorting algorithm makes ordering

decisions only on the basis of comparisons.

Sorting Algorithms

• There are many comparison based sorting
algorithms, such as:

– Bubble Sort

– Selection Sort

– Insertion Sort

– Merge Sort

– Quick Sort

Bubble Sort

• The list is divided into two sublists: sorted and unsorted.

• Starting from the bottom of the list, the smallest element is
bubbled up from the unsorted list and moved to the sorted
sublist.

• After that, the wall moves one element ahead, increasing
the number of sorted elements and decreasing the number
of unsorted ones.

• Each time an element moves from the unsorted part to the
sorted part one sort pass is completed.

• Given a list of n elements, bubble sort requires up to n-1
passes to sort the data.

Bubble Sort

23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

Bubble Sort Algorithm

void swap(int &lhs, int &rhs);

void bubleSort(int a[], int n) {

bool sorted = false;

int last = n-1;

for (int i = 0; (i < last) && !sorted; i++){

sorted = true;

for (int j=last; j > i; j--)

if (a[j-1] > a[j]{

swap(a[j],a[j-1]);

sorted = false; // signal exchange

}

}

}

void swap(int &lhs, int &rhs){
int tmp = lhs;
lhs = rhs;
rhs = tmp;

}

Bubble Sort – Analysis

• In general, we compare keys and move items (or

exchange items) in a sorting algorithm (which

uses key comparisons).

 So, to analyze a sorting algorithm we

should count the number of key comparisons

and the number of moves.

• Ignoring other operations does not affect our final

result.

Bubble Sort – Analysis

• Best-case:  O(n)
– Array is already sorted in ascending order.

– Outer loop executes 1 time and inner loop n-1 times.

– The number of moves: 0  O(1)

– The number of key comparisons: (n-1)  O(n)

• Worst-case:  O(n2)
– Array is in reverse order:

– Outer loop is executed n-1 times and inner loop executes (n-1-i) times,

– The number of moves: 3*((n-1)+(n-2)+...+3+2+1) = 3 * n*(n-1)/2  O(n2)

– The number of key comparisons: ((n-1)+(n-2)+...+3+2+1) = n*(n-1)/2  O(n2)

• Average-case:  O(n2)
– We have to look at all possible initial data organizations.

• So, Bubble Sort is O(n2)

Comparison of N, logN and N2

N O(LogN) O(N2)

16 4 256

64 6 4K

256 8 64K

1,024 10 1M

16,384 14 256M

131,072 17 16G

262,144 18 6.87E+10

524,288 19 2.74E+11

1,048,576 20 1.09E+12

1,073,741,824 30 1.15E+18

Selection Sort

• The list is divided into two sublists, sorted and unsorted,
which are divided by an imaginary wall.

• We find the smallest element from the unsorted sublist and
swap it with the element at the beginning of the unsorted
data.

• After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

• Each time we move one element from the unsorted sublist
to the sorted sublist, we say that we have completed a sort
pass.

• A list of n elements requires n-1 passes to completely
rearrange the data.

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Sorted Unsorted

Selection Sort

Selection Sort

void swap(int &lhs, int &rhs);

void selectionSort(int a[], int n) {

for (int i = 0; i < n-1; i++) {

int min = i;

for (int j = i+1; j < n; j++){

if (a[j] < a[min]) min = j;

}

swap(a[i], a[min]);

}

}

Selection Sort -- Analysis

• In selectionSort function, the outer for loop executes n-1 times.

• We invoke swap function once at each iteration.

 Total Swaps: n-1

 Total Moves: 3*(n-1) (Each swap has three moves)

Selection Sort – Analysis (cont.)

• The inner for loop executes the size of the unsorted part minus 1

(n-1-i), and in each iteration we make one key comparison.

 # of key comparisons = ((n-1)+(n-2)+...+3+2+1) = n*(n-1)/2

 So, Selection sort is O(n2)

• The best case, the worst case, and the average case of the

selection sort algorithm are same.  all of them are O(n2)

– This means that the behavior of the selection sort algorithm does not depend on the

initial organization of data.

– Since O(n2) grows so rapidly, the selection sort algorithm is appropriate only for

small n.

– Although the selection sort algorithm requires O(n2) key comparisons, it only

requires O(n) moves.

– A selection sort could be a good choice if data moves are costly but key

comparisons are not costly (short keys, long records).

Insertion Sort

• Insertion sort is a simple sorting algorithm that is
appropriate for small inputs.

– Most common sorting technique used by card players.

• The list is divided into two parts: sorted and unsorted.

• In each pass, the first element of the unsorted part is picked
up, transferred to the sorted sublist, and inserted at the
appropriate place.

• A list of n elements will take at most n-1 passes to sort the
data.

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Sorted Unsorted

Insertion Sort

Insertion Sort Algorithm

void insertionSort(int a[], int n) {

for (int i = 1; i < n; i++){

int tmp = a[i];

int j = i;

for (; j>0 && tmp < a[j-1]; j--){

a[j] = a[j-1];

}

a[j] = tmp;

}

}

Insertion Sort – Analysis

• Running time depends on not only the size of the array but also
the contents of the array.

• Best-case:  O(n)
– Array is already sorted in ascending order.

– Inner loop will not be executed.

– The number of moves: 2*(n-1)  O(n)

– The number of key comparisons: (n-1)  O(n)

• Worst-case:  O(n2)
– Array is in reverse order:

– Inner loop is executed i-1 times, for i = 2,3, …, n

– The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2  O(n2)

– The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2  O(n2)

• Average-case:  O(n2)
– We have to look at all possible initial data organizations.

• So, Insertion Sort is O(n2)

Analysis of Insertion sort

• Which running time will be used to characterize this

algorithm?

– Best, worst or average?

• Worst:

– Longest running time (this is the upper limit for the algorithm)

– It is guaranteed that the algorithm will not be worse than this.

• Sometimes we are interested in average case. But there are

some problems with the average case.

– It is difficult to figure out the average case. i.e. what is average

input?

– Are we going to assume all possible inputs are equally likely?

– In fact for most algorithms average case is same as the worst case.

Mergesort

• Mergesort algorithm is one of two important divide-and-conquer

sorting algorithms (the other one is quicksort).

• It is a recursive algorithm.

– Divides the list into halves,

– Sort each halve separately, and

– Then merge the sorted halves into one sorted array.

Mergesort - Example

Merge Sort

void merge(int theArray[], int first, int mid, int last) {

int tempArray[last+1]; // temporary array

int first1 = first; // beginning of first subarray

int last1 = mid; // end of first subarray

int first2 = mid + 1; // beginning of second subarray

int last2 = last; // end of second subarray

int index = first1; // next available location in tempArray

for (; (first1 <= last1) && (first2 <= last2); ++index) {

if (theArray[first1] < theArray[first2]) {

tempArray[index] = theArray[first1];

++first1;

}

else {

tempArray[index] = theArray[first2];

++first2;

}

}

//Continued to the next page………….

Merge Sort (cont.)

// finish off the first subarray, if necessary

for (; first1 <= last1; ++first1, ++index)

tempArray[index] = theArray[first1];

// finish off the second subarray, if necessary

for (; first2 <= last2; ++first2, ++index)

tempArray[index] = theArray[first2];

// copy the result back into the original array

for (index = first; index <= last; ++index)

theArray[index] = tempArray[index];

}

//Continued from the previous page………….

Merge Sort

void mergesort(int theArray[], int first, int last) {

if (first < last) {

int mid = (first + last)/2; // index of midpoint

// dived into two halves at the middle

mergesort(theArray, first, mid);

mergesort(theArray, mid+1, last);

// merge the two halves

merge(theArray, first, mid, last);

}

}

Merge Sort - Example

6 3 9 1 5 4 7 2

5 4 7 2
6 3 9 1

6 3 9 1 7 2

5 4

6 3 19 5 4 27

3 6 1 9 2 7

4 5

2 4 5 7
1 3 6 9

1 2 3 4 5 7 8 9

divide

dividedividedivide

dividedivide

divide

merge merge

merge

merge

merge merge

merge

Mergesort – Example2

Mergesort – Analysis of Merge

A worst-case instance of the merge step in mergesort

Some elements in the first array are smaller and some elements are larger than all

the elements in the second array

Mergesort – Analysis of Merge (cont.)

Merging two sorted arrays of size k

• Best-case:

– All the elements in the first array are smaller (or larger) than all the

elements in the second array.

– The number of moves: 2k + 2k

– The number of key comparisons: k

• Worst-case:

– The number of moves: 2k + 2k

– The number of key comparisons: 2k-1

......

......

0 k-1 0 k-1

0 2k-1

Mergesort - Analysis

Levels of recursive calls to mergesort, given an array of eight items

Mergesort - Analysis

.

.

.

.

.

.

.

2m

2m-1 2m-1

2m-2 2m-2 2m-2 2m-2

20 20

level 0 : 1 merge (size 2m-1)

level 1 : 2 merges (size 2m-2)

level 2 : 4 merges (size 2m-3)

level m-1 : 2m-1 merges (size 20)

level i : 2i merges (size 2m-i-1)

Mergesort - Analysis
• Worst-case –

The number of key comparisons:

= 20*(2*2m-1-1) + 21*(2*2m-2-1) + ... + 2m-1*(2*20-1)

= (2m - 20) + (2m - 21) + ... + (2m – 2m-1) (m terms)

= m2m – (20 + 21 + ….. + 2m-1)

= m*2m –

= m*2m – 2m – 1

Using m = log n

= n * log2n – n – 1

 O (n * log2n)






1

0

2
m

i

i

Mergesort – Analysis
• Mergesort is extremely efficient algorithm with respect

to time.
– Both worst case and average cases are O (n * log2n)

• But, mergesort requires an extra array whose size

equals to the size of the original array.

Quicksort

• Like mergesort, Quicksort is also based on

the divide-and-conquer paradigm.

• But it uses this technique in a somewhat opposite manner,

as all the hard work is done before the recursive calls.

• It works as follows:

1. First, it partitions an array into two parts with respect to a

pivot,

2. Then, it sorts the parts independently,

3. Finally, it combines the sorted subsequences by

a simple concatenation.

Quicksort (cont.)

The quick-sort algorithm consists of the following three steps:

1. Divide: Partition the list.

– To partition the list, we first choose some element from the list

for which we hope about half the elements will come before

and half after. Call this element the pivot.

– Then we partition the elements so that all those with values

less than the pivot come in one sublist and all those with

greater values come in another.

2. Recursion: Recursively sort the sublists separately.

3. Conquer: Put the sorted sublists together.

Quick Sort Partition

• Partitioning places the pivot in its correct place position within the array.

Partitions theArray[first..last] such that:

S1 = theArray[first..pivotIndex-1] < pivot

theArray[pivotIndex] == pivot

S2 = theArray[pivotIndex+1..last] >= pivot

• Generates two smaller sorting problems.

– Sort the left section of the array

– Sort the right section of the array

– Two smaller sorting problems are solved recursively to solve

bigger sorting problem.

Quick Sort Partition

Quick Sort Partition: Choosing Pivot

• Which array item should be selected as pivot?

– Somehow we have to select a pivot, and we hope that we will

get a good partitioning.

– If the items in the array arranged randomly, we choose a pivot

randomly.

– We can choose the first or last element as a pivot (it may not

give a good partitioning).

– We can use different techniques to select the pivot.

• Put this pivot into the first location of the array before partitioning

Partition (cont.)

Developing the first

partition of an array

when the pivot is the

first item

Partition (cont.)

Invariant for the partition algorithm

S1: theArray[first+1..lastS1] < pivot

S2: theArray[lastS1+1..firstUnknown-1] >= pivot

Partition (cont.)

When theArray[firstUnknown] >= pivot

Move theArray[firstUnknown] into S2 by incrementing firstUnknown.

Partition (cont.)

When theArray[firstUnknown] < pivot

Move theArray[firstUnknown] into S1 by

swapping theArray[firstUnknown] with theArray[lastS1+1] and

incrementing both lastS1 and firstUnknown.

Partition (cont.)

Initial state of the array

lastS1 = first

firstUnknown = first + 1

S1: theArray[first+1..lastS1]: Empty

S2: theArray[lastS1+1..firstUnknown-1]: Empty

Partition Function
void swap(int &lhs, int &rhs);

void partition(int theArray[], int first, int last,

int &pivotIndex) {

// Choose and place pivot in theArray[first]

choosePivot(theArray, first, last);

// Initialize

int pivot = theArray[first];

int lastS1 = first;

int firstUnknown = first + 1;

//Continued to the next page………….

Partition Function (cont.)

// Move one item at a time until unknown region is empty

for (; firstUnknown <= last; ++firstUnknown) {

if (theArray[firstUnknown] < pivot) { // Belongs to S1

++lastS1; // Expands S1 by incrementing lastS1

// Swap firstUnknown with lastS1

swap(theArray[firstUnknown], theArray[lastS1]);

}

// else belongs to S2, ++firstUnknown in the loop

// places it to S2

}

// Place pivot in proper position and mark its location

swap(theArray[first], theArray[lastS1]);

pivotIndex = lastS1;

}

//Continued from the previous page………….

Quicksort Function

void quicksort(int theArray[], int first, int last) {

int pivotIndex;

if (first < last) {

// create the partition: S1, pivot, S2

partition(theArray, first, last, pivotIndex);

// sort regions S1 and S2

quicksort(theArray, first, pivotIndex-1);

quicksort(theArray, pivotIndex+1, last);

}

}

Quicksort – Analysis

An average-

case

partitioning

with quicksort

Quicksort – Analysis

• Quicksort is O(n*log2n) in the best case and average case.

• Quicksort is slow when the array is sorted and we choose the first

element as the pivot.

• Although the worst case behavior is not so good, its average case

behavior is much better than its worst case.

– So, Quicksort is one of best sorting algorithms using key comparisons.

Quicksort – Analysis

A worst-case partitioning with quicksort

Quicksort – Analysis

Worst Case: (assume that we are selecting the first element as pivot)

– The pivot divides the list of size n into two sublists of sizes 0 and n-1.

– The number of key comparisons

= n-1 + n-2 + ... + 1

= n(n-1)/2

= n2/2 – n/2  O(n2)

– The number of swaps =

= (n-1 + n-2 + ... + 1) + (n-1)

= (n-1) + n(n-1)/2

= n2/2 + n/2 - 1  O(n2)

• So, Quicksort is O(n2) in worst case

swaps outside of

the for loop

swaps inside of

the for loop

Comparison of Sorting Algorithms

