



































































































































Fibonacci Heaps cont'd 10.11

Fibonacci Heaps use lazy implementation of

Insert Min and union if you never

have an Extract Min then its easy to just

keep every node
in the root list and a pointer

to the Min

However this means that the root list is largely

unstructured there is no way to find the next

Min after an Extract Min except to conduct
a

linear search of the root list

General Amortization Strategy
When you have to do a large amount of work
like O r where r is nodes in the root list

also do Ocr amount of clean up

ie reduce the potential for future work






































































































































What we want CONSOLIDATE to accomplish

find the min root in root list

merge trees in root list so there are fewer

to search in future

of same

degree d

000
gg

make one

be child of

other

creating a

dtl degree tree

At the end we want there to be 0 or 1 tree

of each degree






































































































































How we want it to work if we do 15 inserts
and then an Extract Min

52016202210510007090709420137060210102221S

of

8 0.4 8 8

0 08

i






































































































































How do we accomplish this efficiently in code

A f fm
O O

O

686
dob

A 0 D n is an auxiliary array that
is created during the CONSOLIDATE op

D n is the maximum degree of any root
in the

heap of n nodes






































































































































CONSOLIDATE H

new A O D H n of pointers to trees

for 5 0 to DCH n ALI NULL

Hfor each W in H rootlist

x W d x degree

while A d NULL

Y A Cd

if so key y key
exchange x with y
1 now x should be merged tree's root

FibHeap Link H y K

A d NULL

d dtl

Ald x

H 7min Null OLDA
for 5 0 to DC n

if Ali NULL

if H 3min NULL

createroonistjustantaining
Ci

H min Ali






































































































































a
n p p a um

if A i key H min key

H min A i

Fib Heap Link H y x

remove y from root list of H
make y a child of x

x degree t

y mark FALSE mark only if node has lost

I 2 children since it got its cuprenett

Claim Amortized cost of Extract Min is O D n

Proof
min

Actual cost
to add
His min's
children to

00 0 00 00 0 root list is

OCD n

for each w in rootlist Let's count up
The work in this

part Aggregate
Analysts






































































































































Size of rootlist at this point is

CH I
Pffoots

Tottexcept
that wereextracted min
children of min

The while loop is OCI

each time it gets executed
the number

of trees in root list is diminished by 1

total number of executions of while loop

is H 1 D n

and each execution is OCI

Actual
o total work done in Extract Min is

Dcn H

Also Δ0 D n 1 2m H

H 2m H D a 1 t H






































































































































work Ad E O D n H

0 D n 1 t H

EO Dcn

we scale up the units of potential to

dominate the constant hidden in 0 ECH

Claim D n 0 Ign
Proof later

Corollary Extract Min has amortized running time

Ign






































































































































Decreasekey and Delete

Decreasekey H x K

if K so key error new key not less

Key K

y x p
if y Null and a key y key
CUTCH x y
CASCADING CUT H Y

if key L H min key
Htm in X

CUTCH x y

remove x from y's child list
y degree

add K to H's root list

xp Nun
a mark FALSE

CASCADING CUT H Y
2 y p
if z NULL

if ye mark
FALSE






































































































































yo mark TRUE

else
cut H y
CASCADINGCUTCH Z

How Decreasekey works
constant amount of work DO 0 UNLESS

it leads to violation of Heap order

If a key a xp key then

cut x from xp put x in rootlist

if x p has already had a child cut then

cut x p from app

if xp p has already
had a child at

cut x p pop

We use mark to tell us whether a node has

already had a child cut only allowed

1 child cut since it got its current parent










 Claim Amortized cost of Decrease key is I

Proof Recall H 2m

Decreasekey is I if no cascading
cuts

i.e either no cuts or just x is cut

reduces m by 0 or 1

Suppose Decrease key prompts C cascading cuts

of x p x p p etc

Of the C calls to cascading cut

The child's mark was true

and gets set to false

mEff gains

q
To Én

III

last call to

Cascading Cut



t H I 1 1 0

A
2m our 2 2 2 2 for

work H I I 1

770 073

the Decreasekey operation costs

workt Ad I work in Decreasekey

not in cut Cascadat

OCI 5 work in cut and

CASCADING CUT

aggregating the
recursive calls

I amortized time If

CLRS



Delete H K

Decrease key H x x

Extract Min H

Decrease key is I amortized

Extract Min is Dcn amortized

Delete is Dcn amortized


