Assignment $1 \quad \operatorname{cscl} 429 \quad$ Solutions

1. $A=\left[\begin{array}{lllllll}012345678901234567890 \cdots & 6 & 79\end{array}\right]$

Sparse Table first 10 rows are

2. Cartesian tree for
$\left[\begin{array}{llllllllllllllll}19 & 4 & 16 & 70 & 55 & 23 & 93 & 11 & 19 & 40 & 32 & 91 & 67 & 88 & 14 & 12\end{array}\right]$

3. Write psendocode for Cartesian thee constunction, give array A

The question does not require the algorithon be in linear time, so the basic divide-and-conquer will do:

Cart Tree (array A[0.n-1] of int)
$T=$ Cart Tree Helper $(A, 0, n-l)$
return T

Cart Tree Helper (A, \&, r) /l creates a Cart Tree out of $A[l, r]$ and returns pointer if $l>r$ return NuLL to that tree " if $l==r$ return node $(l$, NULL, NULL)

$$
\min =l
$$

for (int $i=l+1 ; i \leqslant r ; i+t$)
if $A[i]<A[\min]$
$\min =i$
left $=$ Cart TreeHelper (A, l, min -1)
right $=$ Cart Tree Helper $(A$, inn $+1, r)$
return node (min, left, right)
4.1 CTtoBitstring (Car tTree T)
/l given a Cartesian Tree T, constructs an integer, which we /Interpret as a bitstring encoding the shape of a binary tree $b=0$ Il b is a word of O's. Assumes our
if $T==$ NuLl retronn b queue BFS
BFS, enqueue (T)
while ! BFS empty ()

Il word size is sufficient
Il otherwise car string A cords togetta or use Il a vector of boil
$v=$ BFS. dequeue ()
if $v==$ NULL $\quad b=b \ll 1+1 \quad$ //shifts a " 1 " onto
else

$$
\begin{aligned}
& \text { BFS. erquere }(v \rightarrow \text { left }) \\
& B F S . \text { enqueue }(v \rightarrow \text { right }) \\
& b=b \ll 1 \quad / / \text { shifts } a \text { " } O^{\prime \prime} \text { onto } b
\end{aligned}
$$

I/ finally, remove final 1, as it is not part of /l our encoding
$b=b \gg 1$ /The bitstray encoding is the suffix of b that Il has same number of O 's as 1's.
42. No. There is a bijection beturer 'the Cartesian Trees of sike n and the bitstrings of length $2 n$ that - have \#0's = \#1's

- have the prefix property no
prefix has \#1's $>$ \#0's.
(as indicated in tutorial)
\#Cart Trees $\leq \begin{gathered}\text { \# bitstriys } \\ \text { with no's }\end{gathered}<$ bitstrigs
of size of size
$n$$\quad$ with no's on $2 n$ $n 1$'s bits,
prefix and prefix if $n>1$
property

Def n: $\mathrm{Bal}_{n}=$ set of strings with n O's, $n \cdot 1_{s}^{\prime}$ that have the prefix property.

Claim: \mid Bal $n \left\lvert\,=\left\{\begin{array}{l}1 \text { if } n=0 \\ \sum_{i=1}^{n} C_{i-1} \cdot C_{n-i} \text { otherwise }\left\{\begin{array}{l}n^{+h} \\ \text { catalan } \\ \text { number }\end{array}\right.\end{array}\right.\right.$
Proof: By induction on n.
Basis: if $n=0, \exists$ just one string, ε, of length 0 and $\mathrm{Bal}_{0}=\{\varepsilon\}$

Now let n be any integer >0, and suppose that the claim holds for all $i<n$.

Consider any $s \in \mathrm{Bal}_{n}$.
There must exist some smallest $i>0$ such that
the prefix $S[1.2 i] \in \mathrm{Bal}_{i}$

$$
\operatorname{eg}\left(()()()_{\uparrow}^{i=3}<\sum_{i=2}(()()())\right.
$$

Call i the "firs taut" for the strong.
he will sum up ore all possible $i, 1 \leq i \leq h$, he ways to build a sting in B_{n} that has i as its first ant.

$$
\therefore \quad\left|B_{n}\right|=\sum_{i=1}^{n} C_{i-1} \cdot C_{n-i}
$$

4.3 Bitsto CIre (b)

I/ b is a bitting which could be stored as along // unsigned integer
Reverse b so root is at least-sig-bit of the representation II I many ways to do this
new queue $B F=$ NULL
new threnode $T=\operatorname{node}(-$, NuLL, mull $)$

$$
t=8 T
$$

while $b>0$
if b is ever (/ lost sig bit is 0 $t=\operatorname{node}(-$, NuLL, Aucl)
BFS. enqueue $\left(8 t^{\prime} \rightarrow\right.$ left $)$
BFS. enqueue $(* t \rightarrow r i g h t)$
else

$$
\begin{aligned}
& t=\text { NULL } \\
& b=b \gg 1 \\
& t=B F S \text { o dequeue }()
\end{aligned}
$$

// need the extra I node to complete the tree $t=$ NuLL.
5. MIT notes acknowledge that the values of the integers stored are in range $1 \ldots \lg n$, and suck integer can be encoded in $\lg \lg n$ bits.

$$
\begin{aligned}
\therefore \text { oo the table size } & =\# \text { entries } * \text { size of entry encoding } \\
& =\sqrt{n} \lg ^{2} n * \lg \lg n \\
& =\sqrt{n} \lg ^{2} n \lg \lg n .
\end{aligned}
$$

6. We not that $\mid \notin \Omega\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$, so $n^{\varepsilon} \in \circ(1) \quad \forall \varepsilon>0$.
claim: $n^{1 / 4} \notin O(1)$ (ie, $1 \in \circ\left(n^{1 / 4}\right)$
Proof: BWOC. \& F n_{0}, c such that $n^{1 / 4} \leqslant c \cdot 1 \quad \forall n \geqslant n_{0}$

$$
\Rightarrow n \leq c^{4} \quad \forall n \geqslant n_{0}
$$

But $n=1+\max \left(n_{0}, c^{4}\right)$ provides a contradiction. Claim: $\sqrt{n} \lg ^{2} n \lg \lg n \in o(n)$

Proof: (1) $\sqrt{n} \in O(\sqrt{n})$ constant factors
(2) $\operatorname{ly}^{2} n \in O\left(n^{\frac{1}{8}}\right) \quad$ Log Domination Rule
(3) $\lg n \in O\left(n^{\frac{1}{8}}\right) \quad \log$ Domination
(4) $\lg \log n \in O\left(\frac{1}{8} \lg n\right)$
(3) taking log 5
(5) $\lg \lg n \in O(\lg n)$
(4), constant factors
(6) $\lg \lg n \in O\left(n^{\frac{1}{8}}\right)$
(5),(3), transitivity
(7) $\sqrt{n} \lg ^{2} n \lg \lg n \in O\left(n^{6 / 8}\right)$,
(1), (2) (6) Product Rule
(8) $\mid \in o\left(n^{2 / 8}\right)$ separately proved.
(9) $\sqrt{n} \lg ^{2} n \lg \lg n \in o(n)$,
(7), 9 product rule.
7. MinContig Sum $(A[0 \cdots n-1])$

Best Include $=0$
Best Skip $=0$
for $i=0$ to $n-1$

$$
\begin{aligned}
& \text { Best Include }=\min (0, \text { BestInclude }+A[i], A[i]) \\
& \text { BestSRip }=\min \text { (BestSRip, Best Include) }
\end{aligned}
$$

return Best skip
why it works:
Induction. Before any iterations of the loop, ie. $i=-1$, the empty subsequence is best contig sum so far, and its sum is 0 .

If, after i iterations of the loop,

- Bestskip is overall min contigsum of $A[0 . . i-1]$
- Best Include is min contiz sum that ends at $A[i-1]$,
then after one more iteration the same is the - it is a "loop insariant"

0. at end, Best Skip will be min contig sum.
