Assignment 1 CSCI 429 Solutions

1. A= [012345678901234567890.... 6789]

Sparse Table first 10 rows are

2. Curtesian tree for

[19 4 16 70 55 23 93 11 19 40 32 91 67 88 14 12]

3. Write pseudocode for Carlesian tree construction, give orray A The greation does not require the algorithm be in linear time, so the basic divide-and-congrer will do: Cart Tree (array AEO...n-1] of int) T= Cart Tree Helper (A, D, n-1) return T

4.1 CT to Bitstring (Cart Tree T) // given a cartesian tree T, constructs on integer, which we Minterpret as a bitstring encoding the shape of a binary tree b= 0 // b is a word of O's Assumes our // word size is sufficient if T== NULL return b // otherwise can string queue BES I winds together or use BFS. erqueue (T) 11 a vector of bool while ! BFS. empty () v = BFS. dequeue () if U == NULL $b = b \ll | + |$ //shifts a 1 outo else BFS, enquire (v > left) BFS.erqueue (v > right) b=b<</br> //finally, remove final 1, as it is not part of ll our encoding b=b>>1 // The bitstry encoding is the suffix of b that // has same number of D's as 1's. 42. No, There is a bijection between the Contesian Trees of size n and The bitstrings of length 2n that - have #0's = #1's - have the prefix property : no

Claim: |Baln| = SI if n=0

$$\sum_{i=1}^{n-1} C_{i-1} \cdot C_{n-i}$$
 otherwise number

the prefix
$$S[1-2i] \in Bal$$
:
eq (()()())
 $i = 3$
Call i the "first cut" for the strag.
We will sum up over all possible i, $1 \le i \le n$, the
Ways to bild a strag in B_n that has i as its
first cut.
Fix is (
 1
 $all possible$
 B_{i-1}
 $ble = Bali$

$$\begin{bmatrix} 0 \\ 00 \end{bmatrix} B_n = \sum_{i=1}^{n} C_{i-1} \cdot C_{n-i}$$

4.3 Bits & C Tree (b) // b is a bit strong which could be stored as a long // Unsigned integer Reverse b so root is at least-sig-bit of The representation // I many ways to do this

new queue BFS = NULL
New transde
$$T = node(-, Null, null)$$

 $t = 8T$
While $b > 0$
if b is even // least sig bit is 0
 $t = node(-, Null, Null)$
BFS. enqueue $(t \to ieft)$
BFS. enqueue $(t \to right)$
else
 $t = Null$
 $b = b >> 1$
 $t = BFS. dequeue ()$
// need the entre 1 node to complete the free
 $t = Null$.

5. MIT notes acknowledge pet revalues of
the integers stored are in range 1... lgn,
and such integers can be encoded in lglg n bits.
So the table size = # entries * size of entry encoding
=
$$\ln |g^2 n + |g|g n$$

= $\ln |g^2 n |g|g n$.

6. We not that $| \notin \mathfrak{L}(n^{\varepsilon})$ for any $\varepsilon > 0$, so $n^{\varepsilon} \in o(1) \quad \forall \in O$. claim: $n^{1/4} \notin O(1)$ (ie, $1 \notin o(n^{1/4})$ Prof: BWOC. \$ 7 no, C such that n 4 2 C. (Vn > no $\implies n \leq C^{\mu} \quad \forall \quad n \geq N_{o}$ But $n = (+ max(n_0, C^4))$ provides a contradiction. Claim: $\int n^{1} lg^{2}n lg lg n \in o(n)$ Proof: DINEO(SN) constant factors (a) $kg^2 n \in O(n^{\frac{1}{8}})$ Log Domination Rule ③ lg n ∈ O(n[±]) Log Domination (gly n ∈ O (\$ lg n) 3, taking logs
(gly n ∈ O (lg n) (D, constant factors $\overline{6}$ lg lg n $\in O(n^{\frac{1}{2}})$ $\overline{5},\overline{3},$ transitivity $(\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n} lg \mathbf{n} lg \mathbf{n} \in O(\mathbf{n}^{6})) \\ (\mathbf{n}^{6} lg^{2} \mathbf{n} lg \mathbf{n$ B 1 € o(n^{2/3}) Separately Proved. Rule 9 Jh lg²n lgly n E o(n) 0,9 product

Best Include = 0
Best Skip = 0
for
$$i = 0$$
 to $n-1$
Best Include = min(0, Best Include + AEi], ATi])
Best Skip = min (Best Skip, Best Include)

oo at end, Best SFip will be min Contig sum.