## Assignment 2 WITH SOLUTIONS

Oct 15, 2015 Due Oct 23

1. [10] Give a Dyramiz Programming recursive formula for "Maximum Bitonic Subsequence".

I.E. find the cardinality of the largest not-necessarily-contiguous subsequere of a given input sequence  $A = [a_1, a_2, ..., a_n]$  of integers.

[a sequence is bitonic if its values rise and then fall. 8 1453927692

-the red numbers are a bitonic subsequence Either the rising or the falling can be empty.]

Ensure the recursive formula does not have eyelic dependencies by identifying an evaluation order

Solution: First, for each element a; calc and memoize

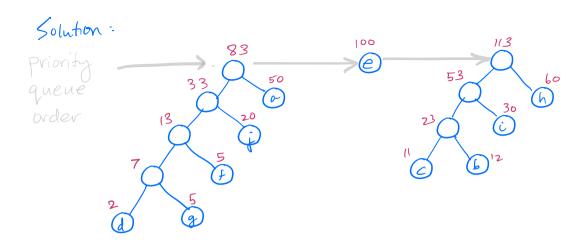
- longest increasing subseq that ends at a:
- longest decreasing subseq that starts at ai
- Note: This solution assumes STRICTLY increasing, then STRICTLY decreasing. The alternative is also acceptable, as the ambiguity is in the question.

$$Inc[i] = \begin{cases} | if & i = 1 \\ max & Inc[j] \\ j < i \\ where \\ a_{j} < a_{i} \end{cases}$$

You can evaluate in the order

"for each 
$$i = 1, 2, ... n$$

1. evaluate Inc[i] and Dec [n+1-i]


for each  $i = 1, 2, ... n$ 

1. evaluate Bit [i] "

2. [I mark] Let the letters and frequencies be as given below by A and F, respectively. What are the contents of the Priority Queue when only three trees remain?

$$A = a b c d e f g h i j$$
  
 $F = 50 12 11 2 100 5 5 60 30 20$ 

Give the three trees, with key values on each node of each tree (ie priority-queue key values).

