1. [5] ADT Array is given below:

init()

set (inti, int val)

// precondition: val = NO_VAL,

// where NO_VAL is a reserved value

int get (int i)

// returns NO_VAL if there has

// been no set(i val) since

// last init(): returns

// val in last set (i, val)

poparation otherwise

Give pseudocode for an implementation

of Array that runs in O(1) for

each operation

2. [5] Let $x_1 < x_2 < \dots < x_n$ be an ordered set of elements (or keys) and let $f[i] = \text{number of times } x_i \text{ is}$ searched for in the lifetime of the BST that stores the elements.

The cost Cost[T] of a Binary Search
Tree T that stores the elements is The
total number of element-companisons
executed over all Searches.

Opt Cost [1.. h] is the optimal (lowest) cost of any BST that stores the elements $\{x_i, ..., x_n\}$ and, more generally,

Opt Cost [i k] is the optimal cost of any BST on the elements $\{x_i, ..., x_k\}$, for any $1 \le i \le k \le n$, under the given frequency assumptions (i.e. $\{x_i, ..., x_k\}$).

Hilt: Use induction.	