Fib Heaps (cont'd)

25.11.06

Bounding max degree D(n)

D(n) = max degree in the heap

Y = golden rotio = (1+55) = 1.61803...

Size (x) = # nodes in subtree voded at x.

Lemma 19, Elet x -> degree = K.

Let y, yz y, - yk be x's children

in order they were linked to a. Then

y, > degree = 0 WHY?

yr > degree > 0

y3 > degree > 1

y4 -> degree > 2

y > degree > K-2.

In general, for i>0: When yi was linked to x, or move) hence yi's

degree at That time must yi -> degree > i-2 also have been i-1 (or more)

[CONSOLIDATE only links nodes

of some degree . Since that time, yi can have lost at

most one child. .. y degree > i-2

Fibonacci Numbers

$$F_{K} = \begin{cases} 0 & \text{if } k=0 \\ 1 & \text{if } k=1 \end{cases}$$

$$F_{K-1} + F_{K2} \quad \text{if } k \geqslant 2$$

Can prove by induction that:

Lemma 19.2
$$\forall K \geq 0$$
 $F_{k+2} = 1 + \sum_{i=0}^{K} F_i$

Lemma 19.4 Let x be any node in a fib Heap Let $K = x \rightarrow degree$ Then size(x) > F_{k+2} > Y^{k} , where $Y = \frac{(\sqrt{5} + 1)}{2}$

Proof: Let Sk denote min possible size of any node of degree K in any Fib Heap Claim: $S_K \ge F_{K+2} \ \forall \ K \ge 0$ \tag{Hupperson} Proof: By Induction on K.

Basis:
$$S_0 = 1$$

Solve that $S_0 < S_1 < S_2 < S_k$

The a node that realizes the min for degree k

Let Z be a node that realizes the min for degree K. Z o degree = K and $Size(Z) = S_K$

Let y, yz yz ... yk be Z's children in order they were linked to Z.

Size (z) =
$$S_{K}$$

 $\geqslant 2 + \sum_{i=2}^{K} S_{i-2}$, from Lemma 19.1
 $\geqslant 1 + \sum_{i=2}^{K} S_{i-2}$, from Lemma 19.1
By Ind Hyp, this
is $\geqslant F_{i}$
 $\geqslant 1 + \sum_{i=0}^{K} F_{i}$

sequence

=
$$F_{k+2}$$
 by Lemma 19.2
 $\nearrow \chi^{k}$ by Lemma 19.3.

Corollary 19.5. The max degree D(n) of any node in an n-node Fib Heap is $O(\lg n)$

Proof:
$$\forall$$
 nodes x
 $n \geq size(x) \geq y^{p(n)} \leftarrow \frac{\log x}{\log x}$
 $\therefore D(n) \leq \log x n$
 $\therefore D(n) \in O(\lg n)$.

	Fib Heap	Binary Heap	Binomial Heap	Leftist Heap
Insert				
Extract Min	^			
Merge				
Decrease Key	,			

	•	