Greedy Alg: Gale Shapley 1108

Each Doctor ranks the mernships

Greedy Alg: Gale Shapley 1108

Each Hospital (Internship) ranks the doctors

Find a "stable" matching

- no doctor

prefers a hospital

that also prefers

that doctor

un stable:

Does a stable matching always exist?

LHistory: This problem actually emerged out of the massive doctor-hospital matching problem every year In The US, "National Resident Matching Pragram", 1950's. 1952 - Boston Pool algorithm was used 1962 - Gale & Shapley formalized The problem, The alg,, and proved it correct.

Shapley: 2012 Nobel Prize in economics (w/ Roth)

It is used for: Kidney-donor faculty-university (France) university-student (German) Ship-Sailor (US Navy) ··· etc

Yes, a stable solution always exists!

Greed must be carefully applied, as just "resolve some instability" iteratively can lead to infinite loops...

Doctors q r s t Huspitals A B C D
top choice: A A B D top choice: t r t s
B D A B s t r r
C C C C r q s q
D B D A q s q t

Round: - An arbitrary unmatched hospital X makes an offer to top-choice doctor y who has not rejected X

- If y is unmatched y matched with X

If y prefers X to y's match y matched with X

If y prefers its current match y rejects X

Keep executing rounds until all hospitals are matched.

Doctors q r s t

top choice: A A B D

B D C B

C C A C

D B D A

top choice: tr ts

s tr r

r q s q

q s q t

round											
Hospital 1-4	5	6	7	8	9	(0	(1	12	13	14	15
Å											
В											
C											
D											

Doctors q r s t top choice: A A B D в ⋉ с В C X * X DXXX

Huspitals A B C D top choice: * * * * × + X × r q ⁵ q q s q t

rou	ind											
Hospital	1-4	5	6	7	8	9	(0	(1	12	13	14	15
Ă	ť		S	5	5		r	r				
В	r	r	۲		t	t	t	£				
C	5	t	t	せ		S	5	5				
D	9	9	2.)	٢	r		9				

Thm: The Gale-Shapley Algorithm results in a stable matching

Proof: It continues until there are no more instabilities, so we need only show that it terminates, which follows from the next theorem.

Thm: The Gale-Shapley Alg terminates within no rounds.

Proof:

rou	ind											
tospital	1-4	5	6	7	8	9	(0	(1	12	13	14	15
Ă	ť		S	5	5		r	4				
В	r	r	۲		t	t	t	£				
C	5	t	t	せ		S	S	5				
D	9	9	2.)	4	r		9				
•				1								

I exactly one new appearance of a doctor in any round. (column)

Y rows, at most n hospitals can appear.

⇒ at most n rounds assign a new acctor to A