## Greedy Algs I

Sept 16, 2025

Another Scheduling Problem:

- 1 1 processor
- n jobs, I;, Isish I; has deadline di and execution time t;

Optimal Schedule: - a permutation of the jobs such that max lateness of completion is MINIMIZED.



there is no gap between enday one job and Starting another.

\$  $I_1, I_2, ..., I_n$  is the schedule we land on.  $F_k = f_{inish} t_{ine} \text{ of } I_k = \sum_{k=1}^{k} t_i$ 

l\_K = lateness of IK = max(0, fk - dk)

We want to minimize the maximum lateness over all the jobs.



- " Least slack time first" (slack = di-ti)

P d, d 2

"Earliest Deadline First" = sort the jobs by di (EDF) and execute in that order.

Theorem: EDF is optimal for minimizing max latency.

First, let us acknowledge that There is no use for idle time for the processor throughout the execution of any schedule.

Defn: Let I, I2, ..., In be the intervals in sorted order,

thus defining fi and li for i, | si = n

This will be our canonical schedule. I

Defin: Let J., Je, ..., In be some other order, defining fi and li - this is the schedule J

Defn: An inversion is a pair of jobs in a schedule where the earlier job has the later deadline.

Let us assume for now that \$ duplicate deadlines.

Claim:  $\forall$  schedule  $J \neq I$ ,  $\exists$  an adjacent inversion that can be swapped, yielding  $J^*$ , where  $J^*$  has max latency  $\leq$  that of J.



| difference in | latercy:       |      |    |      |     |      |         |         |
|---------------|----------------|------|----|------|-----|------|---------|---------|
| difference in | latercy        | now  | ίS | less | Nan | fis  | latercy | before. |
| js            | latercy        | nov  | íS | less | Tat | j's  | latera  | before. |
| 9             | Catercy<br>max | deto | re | was  | fle | one. | That r  | night   |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |
|               |                |      |    |      |     |      |         |         |